Kết hợp mô hình dựa trên quy trình và mô hình dựa trên bề mặt để mô phỏng sự không đồng nhất dưới lòng đất trong các tầng chứa nước núi lửa

Springer Science and Business Media LLC - Tập 32 - Trang 2565-2583 - 2018
Mohammad Koneshloo1,2, Pieter Kreyns1, Holly A. Michael1,3
1Department of Geological Sciences, University of Delaware, Newark, USA
2Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, USA
3Department of Civil and Environmental Engineering, University of Delaware, Newark, USA

Tóm tắt

Các mô hình thực tế về cấu trúc đá học rất quan trọng để dự đoán dòng chảy và vận chuyển qua các tầng chứa nước núi lửa không đồng nhất. Các mô hình hiện có về dòng chảy dung nham dựa trên các quá trình vật lý có khả năng mô phỏng thực tế hình học và đá học của dòng chảy, nhưng cường độ tính toán hạn chế khả năng áp dụng trong việc tạo ra toàn bộ tầng chứa nước. Các mô hình bề mặt nhanh đã được phát triển cho việc lập bản đồ nguy cơ, nhưng những mô hình này không tích hợp hình học 3D hoặc đá học rất quan trọng cho các ứng dụng thủy địa chất. Ở đây, chúng tôi phát triển một phương pháp mô hình hóa lai (HMM) dựa trên sự kết hợp giữa mô hình dựa trên quy trình (PBM) và mô hình dựa trên bề mặt. Các phương pháp được trình bày và so sánh với một dòng chảy đơn lẻ đã biết và với nhau trong một mô phỏng toàn bộ tầng chứa nước. Kết quả cho thấy rằng cả mô phỏng PBM và HMM đều tái tạo hợp lý hình học dòng chảy (độ dài, nhánh, độ dày) của vụ phun trào năm 1984 tại Mauna Loa ở Hawai’i. Các mô phỏng của một tầng chứa nước núi lửa được xây dựng từ 100 dòng chảy với PBM và HMM khá giống nhau về phân bố không gian và tổng tỷ lệ đá học (aa, chuyển tiếp, pahoehoe, tro), hình học dòng chảy và hình học tầng chứa nước. Do đó, phương pháp lai là một phương pháp hiệu quả để tạo ra các mô hình thực tế về cấu trúc tầng chứa nước núi lửa. Độ thực tế của mô hình và phương pháp tham số có thể được cải thiện khi có thêm dữ liệu hiện trường.

Từ khóa

#mô hình hóa lai #dòng chảy dung nham #tầng chứa nước núi lửa #đá học #mô phỏng hình học dòng chảy

Tài liệu tham khảo

Avolio MV, Crisci GM, Di Gregorio S et al (2006) SCIARA γ2: an improved cellular automata model for lava flows and applications to the 2002 Etnean crisis. Comput Geosci 32(7):876–889. https://doi.org/10.1016/j.cageo.2005.10.026 Benoit N, Marcotte D, Boucher A et al (2017) Directional hydrostratigraphic units simulation using MCP algorithm. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-017-1506-9 Bernabeu N, Saramito P, Smutek C (2014) Numerical modeling of non-Newtonian viscoplastic flows: Part II. Viscoplastic fluids and general tridimensional topographies. Int J Numer Anal Model 11(1):213–228 Bernabeu N, Saramito P, Smutek C (2016) Modelling lava flow advance using a shallow-depth approximation for three-dimensional cooling of viscoplastic flows. Geol Soc Lond Spec Publ 426(1):409–423 Bertrand G, Celle-Jeanton H, Huneau F et al (2010) Identification of different groundwater flowpaths within volcanic aquifers using natural tracers for the evaluation of the influence of lava flows morphology (Argnat Basin, Chaîne Des Puys, France). J Hydrol 391(3–4):223–234. https://doi.org/10.1016/j.jhydrol.2010.07.021 Bilotta G, Hérault A, Cappello A et al (2016) GPUSPH: a smoothed particle hydrodynamics model for the thermal and rheological evolution of lava flows. Geol Soc Lond Spec Publ 426(1):387–408 Bonadonna C, Costa A (2013) Modeling of tephra sedimentation from volcanic plumes. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp 173–202 Bonadonna C, Ernst GG, Sparks RS (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3):173–187 Cabrera MC, Custodio E (2004) Groundwater flow in a volcanic? Sedimentary coastal aquifer: Telde Area, Gran Canaria, Canary Islands, Spain. Hydrogeol J 12(3):305–320. https://doi.org/10.1007/s10040-003-0316-y Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to ‘A’ā. Bull Volcanol 61(5):306–323 Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty: Wiley series in probability and statistics, 2nd edn. Wiley, New York Ciraudo A, Del Negro C, Herault A, Vicari A (2007) Advances in modelling methods for lava flows simulation. In: Puccio L (ed) Communications to SIMAI congress, vol 2. pp 1–8. https://doi.org/10.1685/csc06067 Ciraudo A, Del Negro C, Dragoni M, et al (2008) A cellular automata model for the formation of lava tubes. Geophys Res Abstr. 10, Abstract EGU2008-A-02644. http://meetings.copernicus.org/www.cosis.net/.../EGU2008/02644/EGU2008-A-02644.pdf Costa A, Macedonio G (2005) Numerical simulation of lava flows based on depth-averaged equations. Geophys Res Lett 32(5):L05304. https://doi.org/10.1029/2004gl021817 D’Ambrosio D, Spataro W, Parise R et al (2014) Lava flow modeling by the sciara-fv3 parallel numerical code. In: Parallel, distributed and network-based processing (PDP), in parallel, distributed and network-based processing (PDP), 22nd euromicro international conference, pp 330–338 Damiani ML, Groppelli G, Norini G et al (2006) A lava flow simulation model for the development of volcanic hazard maps for Mount Etna (Italy). Comput Geosci 32(4):512–526 de Carvalho PR, da Costa JF, Rasera LG et al (2017) Geostatistical facies simulation with geometric patterns of a petroleum reservoir. Stoch Environ Res Risk Assess 31(7):1805–1822 Decker RW, Christiansen RL (1984) Explosive eruptions of Kilauea volcano, Hawaii. In: Smith RB, Braile LW (eds) Explosive volcanism: inception, evolution, and hazards. National Academy Press, Washington, DC Di Gregorio S, Serra R (1999) An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Gener Comput Syst 16(2):259–271 Dietterich HR, Cashman KV (2014) Channel networks within lava flows: formation, evolution, and implications for flow behavior. J Geophys Res Earth Surf 119(8):1704–1724 Dietterich HR, Poland MP, Schmidt DA et al (2012) Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai’i, with synthetic aperture radar coherence. Geochem Geophys Geosyst 13:Q05001 Dragoni M (1989) A dynamical model of lava flows cooling by radiation. Bull Volcanol 5:88–95 Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: Implications for lava flows. J Volcanol Geotherm Res 30:305–325 Favalli M, Pareschi MT, Neri A et al (2005) Forecasting lava flow paths by a stochastic approach. J Geophys Res B Solid Earth 32(3):1–4. https://doi.org/10.1029/2004gl021718 Favalli M, Tarquini S, Fornaciai A et al (2009) A new approach to risk assessment of lava flow at Mount Etna. Geology 37(12):1111–1114 Felpeto A, Martí J, Ortiz R (2007) Automatic GIS-based system for volcanic hazard assessment. J Volcanol Geotherm Res 166(2):106–116 Garcia MO, Haskins EH, Stolper EM et al (2007) Stratigraphy of the Hawai‘i Scientific Drilling Project core (HSDP2): anatomy of a Hawaiian shield volcano. Geochem Geophys Geosyst 8(2):Q02G20 Gego EL, Johnson GS, Hankins M (2001) An evaluation of methodologies for the generation of stochastic hydraulic conductivity fields in highly heterogeneous aquifers. Stoch Environ Res Risk Assess 15(1):47–64 Harris AJ (2013) Lava flows. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp 85–160. https://doi.org/10.1017/cbo9781139021562 Harris A, Rowland S (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63(1):20–44. https://doi.org/10.1007/s004450000120 Harris AJ, Rowland SK (2015) FLOWGO 2012, an updated framework for thermorheological simulations of channel-contained lava. Hawaiian volcanoes: from source to surface. Geophys Monogr Ser 208:457–481 Hemmings B, Gooddy D, Whitaker F et al (2015) Regional studies groundwater recharge and flow on Montserrat, West Indies: insights from groundwater dating. J Hydrol 4:611–622. https://doi.org/10.1016/j.ejrh.2015.08.003 Herault A, Vicari A, Ciraudo A et al (2009) Forecasting lava flow hazards during the 2006 Etna eruption: using the MAGFLOW cellular automata model. Comput Geosci 35(5):1050–1060. https://doi.org/10.1016/j.cageo.2007.10.008 Hidaka M, Goto A, Umino S et al (2005) VTFS project: development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification. Geochem Geophys Geosyst 6:Q07008. https://doi.org/10.1029/2004gc000869 Honarkhah M, Caers J (2012) Direct pattern-based simulation of non-stationary geostatistical models. Math Geosci 44(6):651–672 Hulme G (1974) The interpretation of lava flow morphology. Geophys J Int Soc 39:361–383 Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106(3–4):211–232 Ishihara K, Iguchi M, Kamo K (1989) Numerical simulation of lava flows on some volcanoes in Japan. In: Fink J (ed) Lava flows and domes, IAVCEI proceedings in volcanology, vol 2. pp 174–207 Jasak H, Jemcov A, Tukovic Z (2007) Openfoam: a C++ library for complex physics simulations. In: International workshop on coupled methods in numerical dynamics. Dubrovnik, Croatia, pp 1–20 Kauahikaua J, Margriter S, Lockwood J et al (1995) Applications of GIS to the estimation of lava flow hazard on Mauna Loa Volcano, Hawaii. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Am Geophys Union Geophys Monogr 92:315–325. https://doi.org/10.1029/gm092p0315 Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res B Solid Earth 110(B12):B12202 Klein FW (1982) Patterns of historical eruptions at Hawaiian volcanoes. J Volcanol Geotherm Res 12(1–2):1–35. https://doi.org/10.1016/0377-0273(82)90002-6 Koneshloo M, Aryana SA, Grana D et al (2017) A workflow for static reservoir modeling guided by seismic data in a fluvial system. Math Geosci 49(8):995–1020 Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer, Berlin Lockwood J, Banks N, English T et al (1985) The 1984 eruption of Mauna Loa Volcano, Hawaii. EOS Trans Am Geophys Union 66(16):169–171 Magnall N, James MR, Tuffen H et al (2017) Emplacing a cooling-limited rhyolite lava flow: similarities with basaltic lava flows. Front Earth Sci 44:1–19. https://doi.org/10.3389/feart.2017.00044 Malin MC (1980) Lengths of Hawaiian lava flows. Geology 8(7):306–308. https://doi.org/10.1130/0091-7613(1980)8<306:lohlf>2.0.co;2 Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley, New York Michael HA, Li H, Boucher A et al (2010) Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity. Water Resour Res 46:W05527. https://doi.org/10.1029/2009wr008414 Miyamoto H, Sasaki S (1997) Simulating lava flows by an improved cellular automata method. Comput Geosci 23(3):283–292. https://doi.org/10.1016/s0098-3004(96)00089-1 Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geological Survey Professional Paper, vol 1350. pp 1569–1588 O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Graph Image Process 28(3):323–344. https://doi.org/10.1016/s0734-189x(84)80011-0 Pardo-Igúzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29(6):775–785. https://doi.org/10.1016/s0098-3004(03)00028-1 Patrick MR, Dehn J, Dean K (2004) Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: approach and analysis. J Geophys Res Solid Earth 109(B3):B03202. https://doi.org/10.1029/2003jb002537 Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7:271–293. https://doi.org/10.1016/0377-0273(80)90033-5 Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30(1–2):29–45. https://doi.org/10.1016/0377-0273(86)90066-1 Pinkerton H, Sparks RSJ (1978) Field measurements of rheology of lava. Nature 276:383–385. https://doi.org/10.1038/276383a0 Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–5 Robson JR (1967) Thickness of Etnean lavas. Nature 216:251–252 Rowland SK, Walker GP (1987) Toothpaste Lava: characteristics and origin of a lava structural type transitional between pahoehoe and aa. Bull Volcanol 49:631–641 Sehlke A, Whittington A, Robert B et al (2014) Pahoehoe to ‘a’a transition of Hawaiian lavas: an experimental study. Bull Volcanol 76:876–879. https://doi.org/10.1007/s00445-014-0876-9 Soule SA, Cashman KV (2005) Shear rate dependence of the pahoehoe-to-aa transition: analog experiments. Geology 33(5):361–364. https://doi.org/10.1130/g21269.1 Spataro W, Avolio MV, Ambrosio DD et al (2011) Lava flow simulation with cellular automata: applications for civil defense and land use planning. In: Kacprzyk J, Gonçalves NP, Filipe J (eds) Proceedings of 1st international conference on simulation and modeling methodologies, technologies and applications (SIMULTECH) vol 1. pp 37–44 Thorarinsson SK (1954) The tephra-fall from Hekla on March 29, 1947, II, 3, The eruption of Hekla, 1947–1948: Soc. Sci. Islandica, Reykjavik Tsepelev I, Ismail-Zadeh A, Melnik O et al (2016) Numerical modeling of fluid flow with rafts: an application to lava flows. J Geodyn 97:31–41 Vicari A, Alexis H, Del Negro C et al (2007) Modeling of the 2001 lava flow at Etna volcano by a cellular automata approach. Environ Model Softw 22(10):1465–1471. https://doi.org/10.1016/j.envsoft.2006.10.005 Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11(2–4):139–168 Wadge G, Young PA, McKendrick IJ (1984) Mapping lava flow hazards using computer simulation. J Geophys Res B Solid Earth 99(B1):489–504 Walker GP, Huntingdon AT, Sanders AT et al (1973) Lengths of lava flows. Philos Trans R Soc Lond A 274(1238):107–118