Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media

Geofluids - Tập 4 Số 4 - Trang 284-299 - 2004
Sebastian Geiger1, Stephen Roberts2, Stephan K. Matthäi3, Christopher Zoppou4, A. Burri5
1Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
2Department of Mathematics, Australian National University, Canberra, ACT, Australia .
3Dept. of Earth Sci. & Eng., Imperial Coll. London, London, UK
4Water Division, ACTEW Corporation, Canberra, ACT, Australia
5Department of Mathematics, ETH Zürich, Zürich, Switzerland

Tóm tắt

Abstract

The permeability of the Earth's crust commonly varies over many orders of magnitude. Flow velocity can range over several orders of magnitude in structures of interest that vary in scale from centimeters to kilometers. To accurately and efficiently model multiphase flow in geologic media, we introduce a fully conservative node‐centered finite volume method coupled with a Galerkin finite element method on an unstructured triangular grid with a complementary finite volume subgrid. The effectiveness of this approach is demonstrated by comparison with traditional solution methods and by multiphase flow simulations for heterogeneous permeability fields including complex geometries that produce transport parameters and lengths scales varying over four orders of magnitude.

Từ khóa


Tài liệu tham khảo

Aziz K, 1979, Petroleum Reservoir Simulation

10.1016/S0309-1708(99)00014-7

Bear J, 1972, Dynamics of Fluids in Porous Media

10.1007/BF01581869

10.1137/S1064827595289303

Brooks RH, 1964, Hydraulic Properties of Porous Media

10.2118/942107-G

BurriA(2004)Implementation of a Multiphase Flow Simulator using a Fully Upwind Galerkin Method within the CSP Multiphysics Toolkit.Unpublished Diploma Thesis ETH Eidgenössische Technische Hochschule Zürich Switzerland.

10.1029/WR026i007p01483

Chavent G, 1986, Mathematical Models and Finite Elements for Reservoir Simulation

10.1029/92WR01686

10.1029/96WR00567

10.2118/7196-PA

10.1006/jcph.1993.1072

10.1029/94WR00061

10.1016/0045-7825(89)90088-1

10.1137/0912055

10.1109/TMTT.2004.823595

10.1016/0021-9991(83)90136-5

10.1007/978-3-642-60763-9

10.1016/S0309-1708(97)00023-7

10.1002/(SICI)1097-0363(19990430)29:8<899::AID-FLD715>3.0.CO;2-W

10.1023/A:1011559916309

10.1016/0309-1708(78)90042-8

Huyakorn PS, 1983, Computational Methods in Subsurface Flow

10.2118/78673-PA

Lachassagne P, 1989, Groundwater Management: Quantity and Quality, 3

10.2118/80117-PA

10.1002/fld.1650130803

10.1016/S0375-6742(03)00094-3

10.1029/2003GL019027

Matthäi SK, 1996, The influence of fault permeability on single phase fluid flow near fault‐sand intersections: Results from steady state high‐resolution models of pressure‐driven fluid flow, AAPG Bulletin, 80, 1763

Matthäi SK, 1998, Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs, 157

Matthäi SK, 2001, Complex Systems Platform: CSP3D3.0. User's Guide

10.1029/94WR01786

10.1029/WR012i001p00057

Phillips OM, 1991, Flow and Reactions in Permeable Rocks, 285

10.2172/5212064

Roberts SG, 1996, Computational Techniques and Applications: CTAC95, 677

10.1016/S0925-7721(01)00047-5

10.2118/5723-PA

10.1016/S0377-0427(00)00516-1

10.1137/0721062

10.2136/sssaj1980.03615995004400050002x

10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P