Combining class-modelling and discriminant methods for improvement of products authentication
Tài liệu tham khảo
Oliveri, 2017, Class-modelling in food analytical chemistry: Development, sampling, optimisation and validation issues- A tutorial, Anal. Chim. Acta, 982, 9, 10.1016/j.aca.2017.05.013
Biancolillo, 2020, Chemometric strategies for spectroscopy-based food authentication, Appl. Sci., 10, 6544, 10.3390/app10186544
Rodionova, 2014, Quantitative risk assessment in classification of drugs with identical API content, J. Pharm. Biomed., 98, 186, 10.1016/j.jpba.2014.05.033
Biancolillo, 2018, Authentication of an Italian PDO hazelnut (“Nocciola Romana”) by NIR spectroscopy, Environ. Sci. Pollut. Res., 25, 28780, 10.1007/s11356-018-1755-2
Zhang, 2015, One-class classification based authentication of peanut oils by fatty acid profiles, RSC Adv., 5, 85046, 10.1039/C5RA07329D
Kittiwachana, 2010, One-class classifiers for process monitoring illustrated by the application to on-line HPLC of a continuous process, J. Chemom., 24, 96, 10.1002/cem.1281
Lee, 2020, Monitoring of a machining process using kernel principal component analysis and kernel density estimation, J. Intell. Manuf., 31, 1175, 10.1007/s10845-019-01504-w
Rodionova, 2016, Discriminant analysis is an inappropriate method of authentication, Trac. Trends Anal. Chem., 78, 17, 10.1016/j.trac.2016.01.010
Małyjurek, 2022, Class-modelling of overlapping classes. A two-step authentication approach, Anal. Chim. Acta, 1191, 339284, 10.1016/j.aca.2021.339284
Pomerantsev, 2018, Multiclass partial least squares discriminant analysis: taking the right way—a critical tutorial, J. Chemom., 32, 10.1002/cem.3030
Calvini, 2018, Development of a classification algorithm for efficient handling of multiple classes in sorting systems based on hyperspectral imaging, J. Spectr. Imaging, 7
Vitale, 2018, SIMCA modeling for overlapping classes: fixed or optimized decision threshold?, Anal. Chem., 90, 10738, 10.1021/acs.analchem.8b01270
Joubert, 2019, Formal honeybush tea industry reaches 20-year milestone – progress of product research targeting phenolic composition, quality and bioactivity, South Afr. J. Bot., 127, 58, 10.1016/j.sajb.2019.08.027
Joubert, 2011, Honeybush (Cyclopia spp.): from local cottage industry to global markets- the catalytic and supporting role of research, South Afr. J. Bot., 77, 887, 10.1016/j.sajb.2011.05.014
Biénabe, 2017, Institutionalising geographical indications in southern countries: lessons learned from Basmati and Rooibos, World Dev., 98, 58, 10.1016/j.worlddev.2015.04.004
Savitzky, 1964, Smoothing and differentiation of data by simplified least-squares procedures, Anal. Chem., 36, 1627, 10.1021/ac60214a047
Snee, 1977, Validation of regression models: methods and examples, Technometrics, 19, 415, 10.1080/00401706.1977.10489581
Wold, 1976, Pattern recognition by means of disjoint principal components models, Pattern Recogn., 8, 127, 10.1016/0031-3203(76)90014-5
Wold, 1987, Principal component analysis, Chemometr. Intell. Lab. Syst., 2, 37, 10.1016/0169-7439(87)80084-9
Forina, 1991, A class-modelling technique based on potential functions, J. Chemom., 5, 435, 10.1002/cem.1180050504
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Małyjurek, 2021, The scope of applicability of the selected class-modelling methods, Chemometr. Intell. Lab. Syst., 219, 104427, 10.1016/j.chemolab.2021.104427
Breiman, 1984
Afanador, 2016, Unsupervised random forest: a tutorial with case studies, J. Chemometr., 30, 232, 10.1002/cem.2790
Małyjurek, 2020, Different strategies for class model optimisation, Comp. stud. Talanta, 215, 120912, 10.1016/j.talanta.2020.120912
Forina, 2008, Class-modeling techniques, classic and new, for old and new problems, Chemometr. Intell. Lab. Syst., 93, 132, 10.1016/j.chemolab.2008.05.003