Kết hợp hệ thống Milpa và Công nghệ Push-Pull để sản xuất lương thực bền vững trong nông nghiệp hộ nhỏ. Một bài tổng hợp

Agronomy for Sustainable Development - Tập 43 Số 4 - 2023
Felipe Librán‐Embid1, Adewole Olagoke1, Emily A. Martin1
1Institute of Animal Ecology and Systematics, Justus Liebig University of Gießen, Gießen, Germany

Tóm tắt

Tóm tắtĐạt được an ninh lương thực vẫn là một thách thức cấp bách đối với nông dân quy mô nhỏ, đặc biệt là ở khu vực Châu Phi cận Sahara và Mỹ Latinh. Các biến đổi khí hậu đang diễn ra, sự xâm nhập của cỏ dại độc hại và sâu bệnh cây trồng càng làm trầm trọng thêm tình hình. Việc tối ưu hóa các hệ thống trồng trọt truyền thống để có năng suất bền vững và sản xuất thích ứng với khí hậu là điều cần thiết để giải quyết thách thức này. Hệ thống milpa cổ đại của người tiền Columb trong việc trồng xen ngô với các cây đồng hành như đậu (Phaseolus vulgaris) và bí (Cucurbita spp.) là một hệ thống hiệu quả đã được chứng minh là mang lại năng suất vượt trội trên mỗi đơn vị diện tích so với hệ thống trồng đơn. Công nghệ Push-Pull được phát triển ở Đông Phi, dựa trên việc sử dụng các cây đồng hành có tính chất xua đuổi và bẫy được trồng xen kẽ với ngô (và ở mức độ ít hơn là sorgo), cũng được xem là hiệu quả tương tự trong việc giảm thiểu tác động của các loại sâu bệnh chính đến năng suất, bao gồm cỏ Striga (Striga spp.), sâu đục thân ngô, và sâu bướm quân đội mùa thu (Spodoptera frugiperda). Mặc dù cả hai hệ thống đều có tiềm năng bù đắp cho những hạn chế của nhau, nhưng chưa có việc học hỏi qua lại giữa hệ thống milpa Mesoamerica và Công nghệ Push-Pull Đông Phi. Ở đây, chúng tôi xem xét cả hai hệ thống và trình bày những lợi ích có thể đạt được khi kết hợp các công nghệ này trong nông nghiệp quy mô nhỏ. Hệ thống milpa push-pull được đề xuất có thể thích ứng với các độ cao khác nhau, lượng mưa và mức độ dinh dưỡng của đất, ngoài việc kiểm soát sâu bệnh, do đó có tiềm năng trở thành một kỹ thuật trồng trọt cơ bản ở Mỹ Latinh và khu vực Châu Phi cận Sahara.

Từ khóa


Tài liệu tham khảo

Abang AF, Nanga SN, Fotso Kuate A et al (2021) Natural enemies of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in different agro-ecologies. Insects 12:509. https://doi.org/10.3390/insects12060509

Abunyewa AA, Karbo KN (2005) Improved fallow with pigeon pea for soil fertility improvement and to increase maize production in a smallholder crop–livestock farming system in the subhumid zone of Ghana. Land Degrad Dev 16:447–454. https://doi.org/10.1002/ldr.672

Achigan-Dako EG, Sogbohossou DEO, Houdegbe CA et al (2021) Ten years of Gynandropsis gynandra research for improvement of nutrient-rich leaf consumption : lessons learnt and way forwards. Annu Plant Rev Online 4:767–812. https://doi.org/10.1002/9781119312994.apr0774

Agbodzavu MK, Lagat ZO, Gikungu M et al (2018) Performance of the newly identified endoparasitoid Cotesia icipe Fernandez-Triana & Fiaboe on Spodoptera littoralis (Boisduval). J Appl Entomol 142:646–653. https://doi.org/10.1111/jen.12514

Aldama JM, Plata FS, Bordi IV, Guevara MR (2015) Estrategias para la producción de maíz frente a los impactos del cambio climático. Rev Cienc Soc 21:538–547. https://doi.org/10.31876/rcs.v21i4.25750

Alemayehu FR, Bendevis MA, Jacobsen S-E (2015) The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J Agron Crop Sci 201:321–329. https://doi.org/10.1111/jac.12108

Ali MI, Luttrell RG, Young SY III (2006) Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein. J Econ Entomol 99:164–175. https://doi.org/10.1093/jee/99.1.164

Allen T, Kenis M, Norgrove L (2021) Eiphosoma laphygmae, a classical solution for the biocontrol of the fall armyworm, Spodoptera frugiperda? J Plant Dis Prot 128:1141–1156. https://doi.org/10.1007/s41348-021-00480-9

Altieri MA (1980) Diversification of corn agroecosystems as a means of regulating fall armyworm populations. Fla Entomol 63:450. https://doi.org/10.2307/3494529

Altieri MA (1999) Applying agroecology to enhance the productivity of peasant farming systems in Latin America. Environ Dev Sustain 1:197–217. https://doi.org/10.1023/A:1010078923050

Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. https://doi.org/10.1007/s13593-011-0065-6

Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211. https://doi.org/10.1016/S0167-1987(03)00089-8

Asiwe JNA, Madimabe KS (2020) Performance and economic prospect of pigeonpea varieties in pigeonpea-maize strip intercropping in Limpopo Province. Int J Agric Biol 25:20–26. https://doi.org/10.17957/IJAB/15.1633

Baudron F, Zaman-Allah MA, Chaipa I et al (2019) Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop Prot 120:141–150. https://doi.org/10.1016/j.cropro.2019.01.028

Bebber DP (2015) Range-expanding Pests and pathogens in a warming world. Annu Rev Phytopathol 53:335–356. https://doi.org/10.1146/annurev-phyto-080614-120207

Bentivenha JP, Paula-Moraes SV, Baldin EL, et al (2016) Battle in the new world: Helicoverpa armigera versus Helicoverpa zea (Lepidoptera: Noctuidae). Plos One 11:e0167182. https://doi.org/10.1371/journal.pone.0167182

Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727. https://doi.org/10.1098/rspb.2006.3530

Blanco CA, Chiaravalle W, Dalla-Rizza M et al (2016) Current situation of pests targeted by Bt crops in Latin America. Curr Opin Insect Sci 15:131–138. https://doi.org/10.1016/j.cois.2016.04.012

Blanco CA, Pellegaud JG, Nava-Camberos U et al (2014) Maize pests in mexico and challenges for the adoption of integrated pest management programs. J Integr Pest Manag 5:E1–E9. https://doi.org/10.1603/IPM14006

Braman SK, Raymer PL, Harrison-Dunn M, Nair S (2014) Antibiosis among selected Paspalum taxa to the fall armyworm (Lepidoptera: Noctuidae). J Entomol Sci 49:11–20. https://doi.org/10.18474/0749-8004-49.1.11

Bruce TJA, Midega CAO, Birkett MA et al (2010) Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biol Lett 6:314–317. https://doi.org/10.1098/rsbl.2009.0953

Bundit A, Ostlie M, Prom-U-Thai C (2021) Sunn hemp (Crotalaria juncea) weed suppression and allelopathy at different timings. Biocontrol Sci Technol 31:694–704. https://doi.org/10.1080/09583157.2021.1881446

Caamal-Maldonado JA, Jiménez-Osornio JJ, Torres-Barragán A, Anaya AL (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:27–36. https://doi.org/10.2134/agronj2001.93127x

Carvalho GA, Miranda JC, Moura AP et al (2005) Controle do Leucoptera coffeella (Guérin-Méneville, Perrottet, 1842)(Lepidoptera: Lyonetiidae) com inseticidas granulados e seus efeitos sobre vespas predadoras e parasitóides. Arq Inst Biol 72:63–72. https://doi.org/10.1590/1808-1657v72p0632005

Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity: pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932. https://doi.org/10.1111/j.1461-0248.2011.01642.x

Chen YH, Shapiro LR, Benrey B, Cibrián-Jaramillo A (2017) Back to the origin: in situ studies are needed to understand selection during crop diversification. Front Ecol Evol 5:125. https://doi.org/10.3389/fevo.2017.00125

Cherniwchan J, Moreno-Cruz J (2019) Maize and precolonial Africa. J Dev Econ 136:137–150. https://doi.org/10.1016/j.jdeveco.2018.10.008

Cheruiyot D, Midega CAO, Van den Berg J et al (2018) Suitability of brachiaria grass as a trap crop for management of Chilo partellus. Entomol Exp Appl 166:139–148. https://doi.org/10.1111/eea.12651

Cheruiyot D, Chidawanyika F, Midega CAO et al (2021a) Field evaluation of a new third generation push-pull technology for control of striga weed, stemborers, and fall armyworm in western Kenya. Exp Agric 57:301–315. https://doi.org/10.1017/S0014479721000260

Cheruiyot D, Chiriboga Morales X, Chidawanyika F et al (2021b) Potential roles of selected forage grasses in management of fall armyworm (Spodoptera frugiperda) through companion cropping. Entomol Exp Appl 169:966–974. https://doi.org/10.1111/eea.13083

Chidawanyika F, Muriithi B, Niassy S et al (2023) Sustainable intensification of vegetable production using the cereal ‘push-pull technology’: benefits and one health implications. Environ Sustain. https://doi.org/10.1007/s42398-023-00260-1

Cinel SD, Taylor SJ (2019) Prolonged bat call exposure induces a broad transcriptional response in the male fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) Brain. Front Behav Neurosci 13:. https://doi.org/10.3389/fnbeh.2019.00036

Clarkson J, Borah JR, Baudron F, Sunderland TCH (2022) Forest proximity positively affects natural enemy mediated control of fall armyworm in Southern Africa. Front For Glob Change 5:. https://doi.org/10.3389/ffgc.2022.781574

Cockburn J, Coetzee H, Van den Berg J, Conlong D (2014) Large-scale sugarcane farmers’ knowledge and perceptions of Eldana saccharina Walker (Lepidoptera: Pyralidae), push–pull and integrated pest management. Crop Prot 56:1–9. https://doi.org/10.1016/j.cropro.2013.10.014

Colmenarez YC, Babendreier D, Ferrer Wurst FR, et al (2022) The use of Telenomus remus (Nixon, 1937) (Hymenoptera: Scelionidae) in the management of Spodoptera spp.: potential, challenges and major benefits. CABI Agric Biosci 3:5. https://doi.org/10.1186/s43170-021-00071-6

Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400. https://doi.org/10.1146/annurev.ento.52.110405.091407

Crosa M, Oliveira A, Goyenola R, Frioni L (1999) Comportamiento simbiótico en Desmodium incanum en Uruguay. Agrociencia-Sitio En Repar 3:38–43. https://doi.org/10.2477/vol3iss1pp38-43

Davis T, Day R, Early R, et al (2018) Fall armyworm: impacts and implications for Africa. CABI Evid Note Update CABI Publ Wallingford Oxfs UK 26. https://doi.org/10.1564/v28_oct_02

De Groote H, Vanlauwe B, Rutto E et al (2010) Economic analysis of different options in integrated pest and soil fertility management in maize systems of Western Kenya. Agric Econ 41:471–482. https://doi.org/10.1111/j.1574-0862.2010.00459.x

de Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341. https://doi.org/10.1111/nph.13005

Do Nascimento DD, Vidal RL, Pimenta AA et al (2020) Crotalaria and millet as alternative controls of root-knot nematodes infecting okra. Biosci J:713–719. https://doi.org/10.14393/BJ-v36n3a2020-42248

Drinkwater LE, Midega CAO, Awuor R et al (2021) Perennial legume intercrops provide multiple below ground ecosystem services in smallholder farming systems. Agric Ecosyst Environ 320:107566. https://doi.org/10.1016/j.agee.2021.107566

Dzvene AR, Tesfuhuney W, Walker S, Ceronio G (2022) Effects of intercropping sunn hemp into maize at different times and densities on productivity under rainwater harvesting technique. Front Sustain Food Syst 6:. https://doi.org/10.3389/fsufs.2022.1009443

Ebel R, Pozas Cárdenas JG, Soria Miranda F, Cruz González J (2017) Manejo orgánico de la milpa: rendimiento de maíz, frijol y calabaza en monocultivo y policultivo. Rev TERRA Latinoam 35:149. https://doi.org/10.28940/terra.v35i2.166

Erdei AL, David AB, Savvidou EC, et al (2022) The push-pull intercrop Desmodium does not repel, but intercepts and kills pests. https://doi.org/10.1101/2022.03.08.482778

Espinosa‐Cristia JF, Feregrino J, Isla P (2019) Emerging, and old, dilemmas for food security in Latin America. J Public Aff 19:e1999. https://doi.org/10.1002/pa.1999

Fernandes FL, Sena FME, Picanco MC et al (2010) Coffee volatiles and predatory wasps (Hymenoptera: Vespidae) of the coffee leaf miner Leucoptera coffeella. Sociobiology 56:455–464

Fiaboe KKM, Fernández-Triana J, Nyamu FW, Agbodzavu KM (2017) Cotesia icipe sp. n., a new Microgastrinae wasp (Hymenoptera, Braconidae) of importance in the biological control of Lepidopteran pests in Africa. J Hymenopt Res 61:49–64. https://doi.org/10.3897/jhr.61.21015

Fininsa C (2003) Relationship between common bacterial blight severity and bean yield loss in pure stand and bean-maize intercropping systems. Int J Pest Manag 49:177–185. https://doi.org/10.1080/0967087021000049269

Fischler M (2010) Impact assessment of push–pull technology promoted by icipe and partners in eastern africa. International Centre of Insect Physiology and Ecology/icipe Science Press

Fischer J, Böhm H, Heβ J (2020) Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. Eur J Agron 112:125947. https://doi.org/10.1016/j.eja.2019.125947

Flausino BF, Machado CFM, Silva JHC et al (2022) Intercropping maize with brachiaria can be a double-edged sword strategy. Pest Manag Sci 78:5243–5250. https://doi.org/10.1002/ps.7143

Fomsgaard IS, Anon C, de la Rosa APB, et al (2011) Adding value to holy grain-providing the key tools for the exploitation of amaranth, the protein-rich grain of the Aztecs: results from a joint European-Latin American research project. In: Abstracts of papers of the American Chemical Societey. Amer Chemical Soc 1155 16th st, NW, Washington, DC 20036 USA

Gacheru E, Rao MR (2005) The potential of planted shrub fallows to combat Striga infestation on maize. Int J Pest Manag 51:91–100. https://doi.org/10.1080/09670870400028292

Galdos MV, Brown E, Rosolem CA et al (2020) Brachiaria species influence nitrate transport in soil by modifying soil structure with their root system. Sci Rep 10:5072. https://doi.org/10.1038/s41598-020-61986-0

García González MT, Coca LIR, Cancio YF, et al (2022) Biodiversidad de insectos en sistemas de policultivos de maíz (Zea mays L.): Ecosistemas 2400–2400. https://doi.org/10.7818/ECOS.2400

García González MT, Rojas JAR, González LC, Jiménez DE (2010) Policultivo (maíz-calabaza) en el control de Spodoptera frugiperda (Smith) en Fomento, Sancti Spiritus. Cent. Agríc. 37:57–64

García González MT, Rojas Rojas JA, Castellanos González L et al (2013) Policultivos para el manejo de Spodoptera frugiperda (J.E. Smith) en maíz en un agroecosistema pre montañoso. Cent. Agríc. 40:41–45

Gazal A, Ahmed Z, Lone A, Baba A (2018) Breeding climate change resilient maize and wheat for food security. Retrieved from: https://journals.aesacademy.org/index.php/aaes/article/view/02-02-013

Gebreziher HG (2020) Review on management methods of fall armyworm (Spodoptera frugiperda JE Smith) in Sub-Saharan Africa. Int J Entomol Res 5:09-14. Retrieved from: https://www.entomologyjournals.com/archives/2020/vol5/issue2/5-1–33

Germani G, Plenchette C (2005) Potential of Crotalaria species as green manure crops for the management of pathogenic nematodes and beneficial mycorrhizal fungi. Plant Soil 266:333–342. https://doi.org/10.1007/s11104-005-2281-9

Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–1105. https://doi.org/10.1002/ps.3598

Granada CE, Strochein M, Vargas LK, et al (2014) Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants. Genet Mol Biol 37:396–405. https://doi.org/10.1590/S1415-47572014000300012

Guera OGM, Castrejón-Ayala F, Robledo N et al (2020) Plant selection for the establishment of push–pull strategies for Zea mays–Spodoptera frugiperda pathosystem in Morelos. Mexico. Insects 11:349. https://doi.org/10.3390/insects11060349

Guera OGM, Castrejón-Ayala F, Robledo N et al (2021) Effectiveness of push–pull systems to fall armyworm (Spodoptera frugiperda) management in maize crops in Morelos. Mexico. Insects 12:298. https://doi.org/10.3390/insects12040298

Hadden WL, Watkins RH, Levy LW et al (1999) Carotenoid composition of marigold (Tagetes erecta) flower extract used as nutritional supplement. J Agric Food Chem 47:4189–4194. https://doi.org/10.1021/jf990096k

Hailu G, Niassy S, Zeyaur KR et al (2018) Maize-legume intercropping and push-pull for management of fall armyworm, stemborers, and Striga in Uganda. Agron J 110:2513–2522. https://doi.org/10.2134/agronj2018.02.0110

Harrison RD, Thierfelder C, Baudron F et al (2019) Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J Environ Manage 243:318–330. https://doi.org/10.1016/j.jenvman.2019.05.011

Hassanali A, Herren H, Khan ZR, et al (2008) Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Phil Trans R Soc B 363:611–621. https://doi.org/10.1098/rstb.2007.2173

Held DW, Wheeler C, Abraham CM, Pickett KM (2008) Paper wasps (Polistes spp.) attacking fall armyworm larvae (Spodoptera frugiperda) in turfgrass. Appl Turfgrass Sci 5:1–5. https://doi.org/10.1094/ATS-2008-0806-01-RS

Hoffmann WA, Haridasan M (2008) The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. Austral Ecol 33:29–36. https://doi.org/10.1111/j.1442-9993.2007.01787.x

Hoffmann WA, Lucatelli VM, Silva FJ et al (2004) Impact of the invasive alien grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers Distrib 10:99–103. https://doi.org/10.1111/j.1366-9516.2004.00063.x

Hooper AM, Caulfield JC, Hao B et al (2015) Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica. Phytochemistry 117:380–387. https://doi.org/10.1016/j.phytochem.2015.06.026

Hruska AJ (2019) Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 14:. https://doi.org/10.1079/PAVSNNR201914043

Hüber C, Zettl F, Hartung J, Müller-Lindenlauf M (2022) The impact of maize-bean intercropping on insect biodiversity. Basic Appl Ecol 61:1–9. https://doi.org/10.1016/j.baae.2022.03.005

Imathiu S (2021) Neglected and underutilized cultivated crops with respect to indigenous African leafy vegetables for food and nutrition security. J Food Secur 9:115–125. https://doi.org/10.12691/jfs-9-3-4

Iqbal N, Hussain S, Zhang X-W et al (2018) Imbalance water deficit improves the seed yield and quality of soybean. Agronomy 8:168. https://doi.org/10.3390/agronomy8090168

ISAAA (2018) Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No 54 ISAAA

Jones CM, Parry H, Tay WT et al (2019) Movement Ecology of Pest Helicoverpa: implications for ongoing spread. Annu Rev Entomol 64:277–295. https://doi.org/10.1146/annurev-ento-011118-111959

Jones R, Freeman HA, Monaco GL (2002) Improving the access of small farmers in eastern and southern Africa to global pigeonpea markets. Agricultural Research and Extension Network Paper No. 120. Agricultural Research & Extension Network

Jordon MW, Hackett TD, Aboagye-Antwi F et al (2022) Effects of distance from semi-natural habitat on fall armyworm (Spodoptera frugiperda, J. E. Smith) and its potential natural enemies in Ghana. Bull Entomol Res 112:343–353. https://doi.org/10.1017/S0007485321000894

Kaoneka SR, Saxena RK, Silim SN et al (2016) Pigeonpea breeding in eastern and southern Africa: challenges and opportunities. Plant Breed 135:148–154. https://doi.org/10.1111/pbr.12340

Kenis M, Benelli G, Biondi A, et al (2022) Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol Gen. https://doi.org/10.1127/entomologia/2022/1659

Kenis M, du Plessis H, Van den Berg J et al (2019) Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects 10:92. https://doi.org/10.3390/insects10040092

Khan ZR, Ampong-Nyarko K, Chiliswa P et al (1997) Intercropping increases parasitism of pests. Nature 388:631–632. https://doi.org/10.1038/41681

Khan ZR, Hassanali A, Pickett JA, et al (2003) Strategies for control of cereal stemborers and striga weed in maize-based farming systems in eastern Africa involving ‘push-pull’ and allelopathic tactics, respectively. Abstracts 6th Conference of the African Crop Science Society: Harnassing Crop Technologies to Alleviate Hunger and Poverty in Africa, Nairobi, 12-17 October 2003. p 7

Khan ZR, Midega CAO, Hutter NJ et al (2006) Assessment of the potential of Napier grass (Pennisetum purpureum) varieties as trap plants for management of Chilo partellus. Entomol Exp Appl 119:15–22. https://doi.org/10.1111/j.1570-7458.2006.00393.x

Khan ZR, Midega CAO, Hassanali A et al (2007) Assessment of different legumes for the control of Striga hermonthica in maize and sorghum. Crop Sci 47:730–734. https://doi.org/10.2135/cropsci2006.07.0487

Khan ZR, Midega CAO, Pittchar JO et al (2014) Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos Trans R Soc B Biol Sci 369:20120284. https://doi.org/10.1098/rstb.2012.0284

Khan ZR, Midega CAO, Wanyama JM et al (2009) Integration of edible beans (Phaseolus vulgaris L.) into the push–pull technology developed for stemborer and Striga control in maize-based cropping systems. Crop Prot 28:997–1006. https://doi.org/10.1016/j.cropro.2009.05.014

Khan ZR, Pickett JA (2008) Push-pull strategy for insect pest management. In: Capinera JL (ed) Encyclopedia of Entomology. Springer Netherlands, Dordrecht, pp 3074-3082. https://doi.org/10.1007/978.14020.6359.6.3253

Khan ZR, Pickett JA, van den Berg J et al (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962. https://doi.org/10.1002/1526-4998(200011)56:11%3c957::AID-PS236%3e3.0.CO;2-T

Khan ZR, Pickett JA, Wadhams L, Muyekho F (2001) Habitat management strategies for the control of cereal stemborers and striga in maize in Kenya. Int J Trop Insect Sci 21:375–380. https://doi.org/10.1017/S1742758400008481

Kirsch F, Hass AL, Link W, Westphal C (2023) Intercrops as foraging habitats for bees: Bees do not prefer sole legume crops over legume-cereal mixtures. Agric Ecosyst Environ 343:108268. https://doi.org/10.1016/j.agee.2022.108268

Koji S, Khan ZR, Midega C AO (2007) Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J Appl Entomol 131:186–196. https://doi.org/10.1111/j.1439‐0418.2006.01131.x

Kushida A, Suwa N, Ueda Y, Momota Y (2003) Effects of Crotalaria juncea and C. spectabilis on hatching and population density of the soybean cyst nematode, Heterodera glycines (Tylenchida: Heteroderidae). Appl Entomol Zool 38:393–399. https://doi.org/10.1303/aez.2003.393

Layek J, Das A, Mitran T, et al (2018) Cereal+ legume intercropping: an option for improving productivity and sustaining soil health. In: Legumes for soil health and sustainable management. Springer, pp 347-386. https://doi.org/10.1007/978.981.13.0253.4.11

Le Garff M (2017) Farmer’s knowledge and perception of the milpa system: case study from Sololá region, Guatemala. Dissertation, Wageningen University

le Roux MM, Boatwright JS, van Wyk B-E (2013) A global infrageneric classification system for the genus Crotalaria (Leguminosae) based on molecular and morphological evidence. TAXON 62:957–971. https://doi.org/10.12705/625.1

Liao Y-L, Yang B, Xu M-F et al (2019) First report of Telenomus remus parasitizing Spodoptera frugiperda and its field parasitism in southern China. J Hymenopt Res 73:95–102. https://doi.org/10.3897/jhr.73.39136

Lima MS, Silva PSL, Oliveira OF et al (2010) Corn yield response to weed and fall armyworm controls. Planta Daninha 28:103–111. https://doi.org/10.1590/S0100-83582010000100013

Lopez-Ridaura S, Barba-Escoto L, Reyna-Ramirez CA, et al (2021) Maize intercropping in the milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala. Sci Rep 11:3696. https://doi.org/10.1038/s41598-021-82784-2

Lowder SK, Sánchez MV, Bertini R (2021) Which farms feed the world and has farmland become more concentrated? World Dev 142:105455. https://doi.org/10.1016/j.worlddev.2021.105455

Lu Y, Zheng X, Lu Z (2019) Application of vetiver grass Vetiveria zizanioides: Poaceae (L.) as a trap plant for rice stem borer Chilo suppressalis: Crambidae (Walker) in the paddy fields. J Integr Agric 18:797–804. https://doi.org/10.1016/S2095-3119(18)62088-X

Ma X, Zheng C, Hu C et al (2011) The genus Desmodium (Fabaceae)-traditional uses in Chinese medicine, phytochemistry and pharmacology. J Ethnopharmacol 138:314–332. https://doi.org/10.1016/j.jep.2011.09.053

Maereka EK, Madakadze RM, Nyakanda C (2009) Productivity and weed suppression in maize-pumpkin intercrops in small scale farming communities of Zimbabwe. In: Proc. 9th Afr. Crop Sci. Conference, Cape Town. pp 93–102

Maine JJ, Boyles JG (2015) Bats initiate vital agroecological interactions in corn. Proc Natl Acad Sci U S A 112:12438–12443. https://doi.org/10.1073/pnas.1505413112

Mainka SA, Howard GW (2010) Climate change and invasive species: double jeopardy. Integr Zool 5:102–111. https://doi.org/10.1111/j.1749-4877.2010.00193.x

Maitra S, Shankar T, Banerjee P (2020) Potential and advantages of maize-legume intercropping system. Maize-Prod Use 1–14. https://doi.org/10.5772/intechopen.91722

Manzanero-Medina GI, Vásquez-Dávila MA, Lustre-Sánchez H, Pérez-Herrera A (2020) Ethnobotany of food plants (quelites) sold in two traditional markets of Oaxaca, Mexico. South Afr J Bot 130:215–223. https://doi.org/10.1016/j.sajb.2020.01.002

Matova PM, Kamutando CN, Magorokosho C et al (2020) Fall-armyworm invasion, control practices and resistance breeding in Sub-Saharan Africa. Crop Sci 60:2951–2970. https://doi.org/10.1002/csc2.20317

Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99:6080–6084. https://doi.org/10.1073/pnas.052125199

Maundu MP, Ngugi WG, Kabuye HSC (1999) Traditional food plants of Kenya. National Museums of Kenya

McGuigan C, Reynolds R, Wiedmer D (2002) Poverty and climate change: assessing impacts in developing countries and the initiatives of the international community. Lond Sch Econ Consult Proj Overseas Dev Inst 1-40. Retrieved from https://odi.org/en/publications/poverty-and-climate-change-assessing-impacts-in-developing-countries-and-the-initiatives-of-the-international-community/

Midega CAO, Bruce TJA, Pickett JA et al (2015) Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Res 180:118–125. https://doi.org/10.1016/j.fcr.2015.05.022

Midega CAO, Khan ZR, Van Den Berg J et al (2006) Maize stemborer predator activity under ‘push – pull’ system and Bt-maize: a potential component in managing Bt resistance. Int J Pest Manag 52:1–10. https://doi.org/10.1080/09670870600558650

Midega CAO, Pittchar JO, Pickett JA et al (2018) A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot 105:10–15. https://doi.org/10.1016/j.cropro.2017.11.003

Midega CAO, Wasonga CJ, Hooper AM et al (2017) Drought-tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya. Crop Prot 98:94–101. https://doi.org/10.1016/j.cropro.2017.03.018

Mishra SS, Moharana SK, Dash MR (2011) Review on Cleome gynandra. Int J Res Pharm Chem 1:681-689. Retrieved from: http://www.ijrpc.com/files/00062.pdf

Mohamed KI, Papes M, Williams R et al (2006) Global invasive potential of 10 parasitic witchweeds and related orobanchaceae. Ambio 35:281–288. https://doi.org/10.1579/05-r-051r.1

Mohamed SA, Wamalwa M, Obala F, et al (2021) A deadly encounter: alien invasive Spodoptera frugiperda in Africa and indigenous natural enemy, Cotesia icipe (Hymenoptera, Braconidae). Plos One 16:e0253122. https://doi.org/10.1371/journal.pone.0253122

Molina-Anzures MF, Chávez-Servia JL, Gil-Muñoz A, et al (2016) Eficiencias productivas de asociaciones de maíz, frijol y calabaza (Curcurbita pepo L.), intercaladas con árboles frutales. SciELO Argent 85:36-50. Retrieved from: http://www.scielo.org.ar/scielo.php?script=sci_arttext & pid=S1851-56572016000100010

Molina-Ochoa J, Carpenter JE, Lezama-Gutiérrez R et al (2004) Natural distribution of hymenopteran parasitoids of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae in Mexico. Fla Entomol 87:461–472. https://doi.org/10.1653/0015-4040(2004)087[0461:NDOHPO]2.0.CO;2

Montezano DG, Specht A, Sosa-Gómez DR et al (2018) Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300. https://doi.org/10.4001/003.026.0286

Morales H, Perfecto I (2000) Traditional knowledge and pest management in the Guatemalan highlands. Agric Hum Values 17:49–63. https://doi.org/10.1023/A:1007680726231

Morton JF (1994) Pito (Erythrina berteroana) and chipilin (Crotalaria longirostrata), (fabaceae) two soporific vegetables of Central America. Econ Bot 48:130–138. https://doi.org/10.1007/BF02908199

Mucheru-Muna M, Pypers P, Mugendi D et al (2010) A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Res 115:132–139. https://doi.org/10.1016/j.fcr.2009.10.013

Muli JK, Neondo JO, Kamau PK, Budambula NLM (2020) Genetic diversity and use of African indigenous vegetables especially slender leaf. Int J Veg Sci 1–19. https://doi.org/10.1080/19315260.2020.1829768

Muoni T, Barnes AP, Öborn I et al (2019) Farmer perceptions of legumes and their functions in smallholder farming systems in east Africa. Int J Agric Sustain 17:205–218. https://doi.org/10.1080/14735903.2019.1609166

Murage AW, Midega CAO, Pittchar JO et al (2015) Determinants of adoption of climate-smart push-pull technology for enhanced food security through integrated pest management in eastern Africa. Food Secur 7:709–724. https://doi.org/10.1007/s12571-015-0454-9

Mutyambai DM, Bass E, Luttermoser T et al (2019) More than “push” and “pull”? plant-soil feedbacks of maize companion cropping increase chemical plant defenses against herbivores. Front Ecol Evol 7:217. https://doi.org/10.3389/fevo.2019.00217

Mwakha FA, Budambula NLM, Neondo JO et al (2020) Witchweed’s suicidal germination: can slenderleaf help? Agronomy 10:873. https://doi.org/10.3390/agronomy10060873

Mwila M, Mhlanga B, Thierfelder C (2021) Intensifying cropping systems through doubled-up legumes in Eastern Zambia. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-87594-0

Myaka FM, Sakala WD, Adu-Gyamfi JJ et al (2006) Yields and accumulations of N and P in farmer-managed intercrops of maize–pigeonpea in semi-arid Africa. Plant Soil 285:207–220. https://doi.org/10.1007/s11104-006-9006-6

Ndayisaba PC, Kuyah S, Midega CAO et al (2020) Push‐pull technology improves maize grain yield and total aboveground biomass in maize‐based systems in Western Kenya. Field Crops Research 256:107911. https://doi.org/10.1016/j.fcr.2020.107911

Ndoro OF, Madakadze RM, Kageler S, Mashingaidze AB (2007) Indigenous knowledge of the traditional vegetable pumpkin (Cucurbita maxima/moschata) from Zimbabwe. Afr J Agric Res 2:649-655. Retrieved from: https://academicjournals.org/journal/AJAR/article-abstract/48A782837190

Ngwira AR, Aune JB, Mkwinda S (2012) On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res 132:149–157. https://doi.org/10.1016/j.fcr.2011.12.014

Nicholls CI, Altieri MA (2004) Designing species-rich, pest-suppressive agroecosystems through habitat management. Agroecosystems Anal 43:49–61. https://doi.org/10.2134/agronmonogr43.c4

Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A Review. Agron Sustain Dev 33:257–274. https://doi.org/10.1007/s13593-012-0092-y

Njira KO, Semu E, Mrema JP, Nalivata PC (2017) Biological nitrogen fixation by pigeon pea and cowpea in the doubled-up and other cropping systems on the Luvisols of Central Malawi. Afr J Agric Res 12:1341–1352. https://doi.org/10.5897/AJAR2017.12167

Njunie M, Muthiani E, Mzingirwa A et al (2022) Fodder crop adoption through Push-Pull Technology (PPT) for Fall Armyworm (FAW) control in cereals cropping systems. Int Grassl Congr Proc

Novotny IP, Tittonell P, Fuentes‐Ponce MH et al (2021) The importance of the traditional milpa in food security and nutritional self‐sufficiency in the highlands of Oaxaca, Mexico. PLoS ONE 16:e0246281. https://doi.org/10.1371/journal.pone.0246281

Nyalala S, Grout B (2007) African spider flower (Cleome gynandra L./Gynandropsis gynandra (L.) Briq.) as a red spider mite (Tetranychus urticae Koch) repellent in cut-flower rose (Rosa hybrida L.) cultivation. Sci Hortic 114:194–198. https://doi.org/10.1016/j.scienta.2007.06.010

Odeny DA (2007) The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. In: Natural resources forum. Wiley Online Library, pp 297–305

Ofomata VC, Overholt WA, Lux SA, et al (2000) Comparative studies on the fecundity, egg survival, larval feeding, and development of Chilo partellus and Chilo orichalcociliellus (Lepidoptera: Crambidae) on Five Grasses. Annals Entomol Soc Am 93:492–499. https://doi.org/10.1603/0013-8746(2000)093[0492:CSOTFE]2.0.CO;2

Olabiyi TI, Oyedunmade EEA (2007) Marigold (Tagetes erecta L.) as interplant with cowpea for the control of nematode pests. In: African Crop Science Conference Proceedings. pp 1075–1078

Oluoch MO, Pichop GN, Silué D, et al (2009) Production and harvesting systems for African indigenous vegetables. In: African indigenous vegetables in urban agriculture. Routledge, pp 177–208

Oswald A, Ransom JK (2001) Striga control and improved farm productivity using crop rotation. Crop Prot 20:113–120. https://doi.org/10.1016/S0261-2194(00)00063-6

Parsons D, Ramírez-Aviles L, Cherney JH et al (2009) Managing maize production in shifting cultivation milpa systems in Yucatán, through weed control and manure application. Agric Ecosyst Environ 133:123–134. https://doi.org/10.1016/j.agee.2009.05.011

Pereira EJG, Picanço MC, Bacci L et al (2007) Seasonal mortality factors of the coffee leafminer, Leucoptera coffeella. Bull Entomol Res 97:421–432. https://doi.org/10.1017/S0007485307005202

Polhill RM (1968) Miscellaneous notes on african species of crotalaria L.: II. Kew Bulletin 22:169–348. https://doi.org/10.2307/4107767

Postma JA, Lynch JP (2012) Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann Bot 110:521–534. https://doi.org/10.1093/aob/mcs082

Pyke B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy-behavioural control of Heliothis. Aust. Cotton Grow. 9:7-9. Retrieved from: http://www.push-pull.net/Push-Pull.pdf

Ratnadass A, Rabo Y, Salha H et al (2012) Gynandropsis gynandra (Capparidaceae) citée pour la première fois comme hôte d’Eurystylus spp. (Hemiptera, Miridae). Bull Société Entomol Fr 117:115–118. https://doi.org/10.3406/bsef.2012.2650

Ratnadass A, Zakari-Moussa O, Kadi-Kadi HA et al (2014) Potential of pigeon pea as a trap crop for control of fruit worm infestation and damage to okra. Agric for Entomol 16:426–433. https://doi.org/10.1111/afe.12072

Reddy PP (2017) Intercropping. In: Reddy PP (ed) Agro-ecological approaches to pest management for sustainable agriculture. Springer, Singapore, pp 109–131

Renwick LL, Kimaro AA, Hafner JM, et al (2020) Maize-pigeonpea intercropping outperforms monocultures under drought. Front Sustain Food Syst 4:562663. https://doi.org/10.3389/fsufs.2020.562663

Ribeiro LK, Tokarski A, Rech C, et al (2020) New record of Microtechnites bractatus (Say) (Hemiptera: Miridae) infesting Crotalaria spp. and injuries of Miridae in cultivated plants in the State of Paraná, Brazil. Rev Bras Entomol 64:e20200027. https://doi.org/10.1590/1806-9665-RBENT-2020-0027

Rios-Velasco C, Gallegos-Morales G, Cambero-Campos J et al (2011) Natural Enemies of the Fall Armyworm Spodoptera Frugiperda (lepidoptera: Noctuidae) in Coahuila, México. Fla Entomol 94:723–726. https://doi.org/10.1653/024.103.0414

Ristaino JB, Anderson PK, Bebber DP, et al (2021) The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci 118:e2022239118. https://doi.org/10.1073/pnas.2022239118

Rodingpuia C, Lalthanzara H (2021) An insight into black cutworm (Agrotis ipsilon): a glimpse on globally important crop pest. Sci Vis 21:36–42. https://doi.org/10.33493/scivis.21.02.02

Rojas JC, Kolomiets MV, Bernal JS (2018) Nonsensical choices? Fall armyworm moths choose seemingly best or worst hosts for their larvae, but neonate larvae make their own choices. Plos One 13:e0197628. https://doi.org/10.1371/journal.pone.0197628

Rosado M da C, Araújo GJ de, Pallini A, Venzon M (2021) Cover crop intercropping increases biological control in coffee crops. Biol Control 160:104675. https://doi.org/10.1016/j.biocontrol.2021.104675

Roy HE, Lawson Handley L-J, Schönrogge K et al (2011) Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids? Biocontrol 56:451–468. https://doi.org/10.1007/s10526-011-9349-7

Rugare JT, Pieterse PJ, Mabasa S (2021) Allelopathic potential of green manure cover crops on germination and early seedling development of goose grass [Eleusine indica (L.) Gaertn] and blackjack (Bidens pilosa L.). Int J Agron 2021:e6552928. https://doi.org/10.1155/2021/6552928

Rusinamhodzi L, Makoko B, Sariah J (2017) Ratooning pigeonpea in maize-pigeonpea intercropping: Productivity and seed cost reduction in eastern Tanzania. Field Crops Res 203:24–32. https://doi.org/10.1016/j.fcr.2016.12.001

Samberg LH, Gerber JS, Ramankutty N, et al (2016) Subnational distribution of average farm size and smallholder contributions to global food production. Environ Res Lett 11:124010. https://doi.org/10.1088/1748-9326/11/12/124010

Saraiva NB, Prezoto F, Fonseca M, das G, et al (2017) The social wasp Polybia fastidiosuscula Saussure (Hymenoptera: Vespidae) uses herbivore-induced maize plant volatiles to locate its prey. J Appl Entomol 141:620–629. https://doi.org/10.1111/jen.12378

Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

Saxena KB (2008) Genetic improvement of pigeon Pea — a review. Trop Plant Biol 1:159–178. https://doi.org/10.1007/s12042-008-9014-1

Scheidegger L, Niassy S, Midega C et al (2021) The role of Desmodium intortum, Brachiaria sp. and Phaseolus vulgaris in the management of fall armyworm Spodoptera frugiperda (J. E. Smith) in maize cropping systems in Africa. Pest Manag Sci 77:2350–2357. https://doi.org/10.1002/ps.6261

Schneider S (2014) Family farming in Latin America and the Caribbean. Deep Roots 1ed Roma 26–29

Shamim Z, Razzaq H, Shahid MN, Awan MT (2021) Chapter 14 - generation of new landraces of forage species: red fescue and clover. In: Azhar MT, Wani SH (eds) Wild germplasm for genetic improvement in crop plants. Academic Press, pp 259–268

Shetty LJ, Sakr FM, Al-Obaidy K et al (2015) A brief review on medicinal plant Tagetes erecta Linn. J Appl Pharm Sci 5:091–095. https://doi.org/10.7324/JAPS.2015.510.S16

Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327. https://doi.org/10.1007/s12571-011-0140-5

Sikuku PA, Musyimi DM, Kariuki S, Okello SV (2013) Responses of slenderleaf rattlebox (Crotalaria ochroleuca) to water deficit. JBES 3(12):245–252. https://innspub.net/responses-of-slenderleaf-rattlebox-crotalaria-ochroleuca-to-water-deficit/

Silva BKR da, Sairre LAP de, Eugênio JL, et al (2022) A feasible sampling unit for monitoring Chrysoperla spp. eggs and their potential in biological control on Coffea arabica L. Int J Pest Manag 1–7. https://doi.org/10.1080/09670874.2022.2050834

Silvestri S, Sabine D, Patti K et al (2015) Households and food security: lessons from food secure households in East Africa. Agric Food Secur 4:23. https://doi.org/10.1186/s40066-015-0042-4

Silwana TT, Lucas EO (2002) The effect of planting combinations and weeding on the growth and yield of component crops of maize/bean and maize/pumpkin intercrops. J Agric Sci 138:193–200. https://doi.org/10.1017/S0021859601001861

Sisay B, Simiyu J, Malusi P et al (2018) First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J Appl Entomol 142:800–804. https://doi.org/10.1111/jen.12534

Skinner EM, Díaz-Pérez JC, Phatak SC, et al (2012) Allelopathic effects of sunnhemp (Crotalaria juncea L.) on germination of vegetables and weeds. HortScience. 47:138–142. https://doi.org/10.21273/HORTSCI.47.1.138

Sobhy IS, Tamiru A, Chiriboga Morales X et al (2022) Bioactive volatiles from push-pull companion crops repel fall armyworm and attract its parasitoids. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.883020

Sokame BM, Subramanian S, Kilalo DC et al (2020) Larval dispersal of the invasive fall armyworm, Spodoptera frugiperda, the exotic stemborer Chilo partellus, and indigenous maize stemborers in Africa. Entomol Exp Appl 168:322–331. https://doi.org/10.1111/eea.12899

Sokame BM, Tonnang HEZ, Subramanian S et al (2021) A system dynamics model for pests and natural enemies interactions. Sci Rep 11:1401. https://doi.org/10.1038/s41598-020-79553-y

Sotelo-Cardona P, Chuang W-P, Lin M-Y et al (2021) Oviposition preference not necessarily predicts offspring performance in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) on vegetable crops. Sci Rep 11:15885. https://doi.org/10.1038/s41598-021-95399-4

Southon RJ, Fernandes OA, Nascimento FS, Sumner S (2019) Social wasps are effective biocontrol agents of key lepidopteran crop pests. Proc R Soc B Biol Sci 286:20191676. https://doi.org/10.1098/rspb.2019.1676

Staller JE (2021) Maize in Andean food and culture: interdisciplinary approaches. In: Staller JE (ed) Andean Foodways. Springer International Publishing, Cham, pp 283–310

Storkey J, Bruce TJA, McMillan VE, Neve P (2019) The future of sustainable crop protection relies on increased diversity of cropping systems and landscapes. In: Agroecosystem Diversity. Elsevier, pp 199–209

Suárez JC, Anzola JA, Contreras AT et al (2022) Influence of simultaneous intercropping of maize-bean with input of inorganic or organic fertilizer on growth, development, and dry matter partitioning to yield components of two lines of common bean. Agronomy 12:1216. https://doi.org/10.3390/agronomy12051216

Tann C (2011) Pigeon pea: living up to expectations as a refuge with Bollgard II® cotton in Australia? Outlooks Pest Manag 22:41–43. https://doi.org/10.1564/22feb10

Tavares WS, Cruz I, Silva RB et al (2011) Soil organisms associated to the weed suppressant Crotalaria juncea (Fabaceae) and its importance as a refuge for natural enemies. Planta Daninha 29:473–479. https://doi.org/10.1590/S0100-83582011000300001

Tavares WS, Cruz I, Silva RB, et al (2012) Prey consumption and development of Chrysoperla externa (Neuroptera: Chrysopidae) on Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs and larvae and Anagasta kuehniella (Lepidoptera: Pyralidae) eggs. Maydica 56:Retrieved from: https://journals-crea.4science.it/index.php/maydica/article/view/668

Tay WT, Soria MF, Walsh T, et al (2013) A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. Plos One 8:e80134. https://doi.org/10.1371/journal.pone.0080134

Timilsena B, Niassy S, Kimathi E et al (2022) Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci Rep 12:539. https://doi.org/10.1038/s41598-021-04369-3

Tolosa TA, Tamiru A, Midega CAO et al (2019) Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J Chem Ecol 45:982–992. https://doi.org/10.1007/s10886‐019‐01122‐z

Tripathi MK, Chaudhary B, Sarkar SK et al (2013) Performance of sunnhemp (crotalaria juncea l.) as a summer season (pre-monsoon) crop for fibre. J Agric Sci 5:236. https://doi.org/10.5539/jas.v5n3p236

Truong P, Van TT, Pinners E (2008) Vetiver system applications technical reference manual. Vetiver Netw Int 89:Retrieved from: https://www.vetiver.org/TVN-Manual_Vf.pdf

Udayakumar A, Shivalingaswamy TM, Bakthavatsalam N (2021) Legume-based intercropping for the management of fall armyworm, Spodoptera frugiperda L. in maize. J Plant Dis Prot 128:775–779. https://doi.org/10.1007/s41348-020-00401-2

Uiso FC, Johns T (1996) Consumption patterns and nutritional contribution of Crotalaria Brevidens (Mitoo) in Tarime District, Tanzania. Ecol Food Nutrit 35:59–69. https://doi.org/10.1080/03670244.1996.9991475

Valenzuela H, Smith J (2002) Sustainable agriculture green manure crops. Trop Agric 2:1-3. Retrieved from: https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/b59e4c12-c74e-4b61-91fb-1f983b70db27/content

Van den Berg J (2006a) Oviposition preference and larval survival of Chilo partellus (Lepidoptera: Pyralidae) on Napier grass (Pennisetum purpureum) trap crops. Int J Pest Manag 52:39–44. https://doi.org/10.1080/09670870600552653

van den Berg J (2006b) Vetiver grass (Vetiveria zizanioides (L.) Nash) as trap plant for Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) and Busseola fusca (Fuller) (Lepidoptera: Noctuidae). Ann Société Entomol Fr NS 42:449–454. https://doi.org/10.1080/00379271.2006.10697478

Van den Berg J, De BAJM, Van HH (2006) Oviposition preference and survival of the maize stem borer, Busseola fusca (Lepidoptera : Noctuidae), on Napier grasses, Pennisetum spp., and maize. African Entomology 14:211–218. https://doi.org/10.10520/EJC32700

Van Rheenen HA, Hasselbach OE, Muigai SGS (1981) The effect of growing beans together with maize on the incidence of bean diseases and pests. Neth J Plant Pathol 87:193–199. https://doi.org/10.1007/BF01976985

Vanni RO (2001) El Género Desmodium (leguminosae, Desmodieae) En Argentina. Darwiniana 39:255-285. Retrieved from: https://www.jstor.org/stable/23224221

Varón de Agudelo F, Rodríguez-Chalarca J, Villalobos-Saa JC, Parody-Restrepo J (2022) Manual de enfermedades y plagas del maíz. Advanta Seed International

Vasey RA, Scholes JD, Press MC (2005) Wheat (Triticum aestivum) Is susceptible to the parasitic angiosperm Striga hermonthica, a major cereal pathogen in Africa. Phytopathology 95:1294–1300. https://doi.org/10.1094/PHYTO-95-1294

Villordo-Pineda E, González-Chavira MM, Giraldo-Carbajo P et al (2015) Identification of novel drought-tolerant associated SNPs in common bean (Phaseolus vulgaris). Front Plant Sci 6:546. https://doi.org/10.3389/fpls.2015.00546

Wang K-H, Sipes BS, Schmitt DP (2002) Crotalaria as a cover crop for nematode management: a review. Nematropica:35–58

Weinberger K, Pichop GN (2009) Marketing of African indigenous vegetables along urban and peri-urban supply chains in sub-Saharan Africa. In: African indigenous vegetables in urban agriculture. Routledge, pp 257–276

Wyckhuys KAG, O’Neil RJ (2006) Population dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize. Crop Prot 25:1180–1190. https://doi.org/10.1016/j.cropro.2006.03.003

Wyckhuys KAG, O’Neil RJ (2010) Social and ecological facets of pest management in Honduran subsistence agriculture: implications for IPM extension and natural resource management. Environ Dev Sustain 12:297–311. https://doi.org/10.1007/s10668-009-9195-2

Wyckhuys KAG, O’Neil RJ (2007) Local agro-ecological knowledge and its relationship to farmers’ pest management decision making in rural Honduras. Agric Hum Values 24:307–321. https://doi.org/10.1007/s10460-007-9068-y

Zhang C, Postma JA, York LM, Lynch JP (2014) Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann Bot 114:1719–1733. https://doi.org/10.1093/aob/mcu191

Zizumbo-Villarreal D, Colunga-GarcíaMarín P (2010) Origin of agriculture and plant domestication in West Mesoamerica. Genet Resour Crop Evol 57:813–825. https://doi.org/10.1007/s10722-009-9521-4