Kết hợp hệ thống Milpa và Công nghệ Push-Pull để sản xuất lương thực bền vững trong nông nghiệp hộ nhỏ. Một bài tổng hợp
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abang AF, Nanga SN, Fotso Kuate A et al (2021) Natural enemies of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in different agro-ecologies. Insects 12:509. https://doi.org/10.3390/insects12060509
Abunyewa AA, Karbo KN (2005) Improved fallow with pigeon pea for soil fertility improvement and to increase maize production in a smallholder crop–livestock farming system in the subhumid zone of Ghana. Land Degrad Dev 16:447–454. https://doi.org/10.1002/ldr.672
Achigan-Dako EG, Sogbohossou DEO, Houdegbe CA et al (2021) Ten years of Gynandropsis gynandra research for improvement of nutrient-rich leaf consumption : lessons learnt and way forwards. Annu Plant Rev Online 4:767–812. https://doi.org/10.1002/9781119312994.apr0774
Agbodzavu MK, Lagat ZO, Gikungu M et al (2018) Performance of the newly identified endoparasitoid Cotesia icipe Fernandez-Triana & Fiaboe on Spodoptera littoralis (Boisduval). J Appl Entomol 142:646–653. https://doi.org/10.1111/jen.12514
Aldama JM, Plata FS, Bordi IV, Guevara MR (2015) Estrategias para la producción de maíz frente a los impactos del cambio climático. Rev Cienc Soc 21:538–547. https://doi.org/10.31876/rcs.v21i4.25750
Alemayehu FR, Bendevis MA, Jacobsen S-E (2015) The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J Agron Crop Sci 201:321–329. https://doi.org/10.1111/jac.12108
Ali MI, Luttrell RG, Young SY III (2006) Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein. J Econ Entomol 99:164–175. https://doi.org/10.1093/jee/99.1.164
Allen T, Kenis M, Norgrove L (2021) Eiphosoma laphygmae, a classical solution for the biocontrol of the fall armyworm, Spodoptera frugiperda? J Plant Dis Prot 128:1141–1156. https://doi.org/10.1007/s41348-021-00480-9
Altieri MA (1980) Diversification of corn agroecosystems as a means of regulating fall armyworm populations. Fla Entomol 63:450. https://doi.org/10.2307/3494529
Altieri MA (1999) Applying agroecology to enhance the productivity of peasant farming systems in Latin America. Environ Dev Sustain 1:197–217. https://doi.org/10.1023/A:1010078923050
Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. https://doi.org/10.1007/s13593-011-0065-6
Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211. https://doi.org/10.1016/S0167-1987(03)00089-8
Asiwe JNA, Madimabe KS (2020) Performance and economic prospect of pigeonpea varieties in pigeonpea-maize strip intercropping in Limpopo Province. Int J Agric Biol 25:20–26. https://doi.org/10.17957/IJAB/15.1633
Baudron F, Zaman-Allah MA, Chaipa I et al (2019) Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop Prot 120:141–150. https://doi.org/10.1016/j.cropro.2019.01.028
Bebber DP (2015) Range-expanding Pests and pathogens in a warming world. Annu Rev Phytopathol 53:335–356. https://doi.org/10.1146/annurev-phyto-080614-120207
Bentivenha JP, Paula-Moraes SV, Baldin EL, et al (2016) Battle in the new world: Helicoverpa armigera versus Helicoverpa zea (Lepidoptera: Noctuidae). Plos One 11:e0167182. https://doi.org/10.1371/journal.pone.0167182
Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727. https://doi.org/10.1098/rspb.2006.3530
Blanco CA, Chiaravalle W, Dalla-Rizza M et al (2016) Current situation of pests targeted by Bt crops in Latin America. Curr Opin Insect Sci 15:131–138. https://doi.org/10.1016/j.cois.2016.04.012
Blanco CA, Pellegaud JG, Nava-Camberos U et al (2014) Maize pests in mexico and challenges for the adoption of integrated pest management programs. J Integr Pest Manag 5:E1–E9. https://doi.org/10.1603/IPM14006
Braman SK, Raymer PL, Harrison-Dunn M, Nair S (2014) Antibiosis among selected Paspalum taxa to the fall armyworm (Lepidoptera: Noctuidae). J Entomol Sci 49:11–20. https://doi.org/10.18474/0749-8004-49.1.11
Bruce TJA, Midega CAO, Birkett MA et al (2010) Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biol Lett 6:314–317. https://doi.org/10.1098/rsbl.2009.0953
Bundit A, Ostlie M, Prom-U-Thai C (2021) Sunn hemp (Crotalaria juncea) weed suppression and allelopathy at different timings. Biocontrol Sci Technol 31:694–704. https://doi.org/10.1080/09583157.2021.1881446
Caamal-Maldonado JA, Jiménez-Osornio JJ, Torres-Barragán A, Anaya AL (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:27–36. https://doi.org/10.2134/agronj2001.93127x
Carvalho GA, Miranda JC, Moura AP et al (2005) Controle do Leucoptera coffeella (Guérin-Méneville, Perrottet, 1842)(Lepidoptera: Lyonetiidae) com inseticidas granulados e seus efeitos sobre vespas predadoras e parasitóides. Arq Inst Biol 72:63–72. https://doi.org/10.1590/1808-1657v72p0632005
Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity: pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932. https://doi.org/10.1111/j.1461-0248.2011.01642.x
Chen YH, Shapiro LR, Benrey B, Cibrián-Jaramillo A (2017) Back to the origin: in situ studies are needed to understand selection during crop diversification. Front Ecol Evol 5:125. https://doi.org/10.3389/fevo.2017.00125
Cherniwchan J, Moreno-Cruz J (2019) Maize and precolonial Africa. J Dev Econ 136:137–150. https://doi.org/10.1016/j.jdeveco.2018.10.008
Cheruiyot D, Midega CAO, Van den Berg J et al (2018) Suitability of brachiaria grass as a trap crop for management of Chilo partellus. Entomol Exp Appl 166:139–148. https://doi.org/10.1111/eea.12651
Cheruiyot D, Chidawanyika F, Midega CAO et al (2021a) Field evaluation of a new third generation push-pull technology for control of striga weed, stemborers, and fall armyworm in western Kenya. Exp Agric 57:301–315. https://doi.org/10.1017/S0014479721000260
Cheruiyot D, Chiriboga Morales X, Chidawanyika F et al (2021b) Potential roles of selected forage grasses in management of fall armyworm (Spodoptera frugiperda) through companion cropping. Entomol Exp Appl 169:966–974. https://doi.org/10.1111/eea.13083
Chidawanyika F, Muriithi B, Niassy S et al (2023) Sustainable intensification of vegetable production using the cereal ‘push-pull technology’: benefits and one health implications. Environ Sustain. https://doi.org/10.1007/s42398-023-00260-1
Cinel SD, Taylor SJ (2019) Prolonged bat call exposure induces a broad transcriptional response in the male fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) Brain. Front Behav Neurosci 13:. https://doi.org/10.3389/fnbeh.2019.00036
Clarkson J, Borah JR, Baudron F, Sunderland TCH (2022) Forest proximity positively affects natural enemy mediated control of fall armyworm in Southern Africa. Front For Glob Change 5:. https://doi.org/10.3389/ffgc.2022.781574
Cockburn J, Coetzee H, Van den Berg J, Conlong D (2014) Large-scale sugarcane farmers’ knowledge and perceptions of Eldana saccharina Walker (Lepidoptera: Pyralidae), push–pull and integrated pest management. Crop Prot 56:1–9. https://doi.org/10.1016/j.cropro.2013.10.014
Colmenarez YC, Babendreier D, Ferrer Wurst FR, et al (2022) The use of Telenomus remus (Nixon, 1937) (Hymenoptera: Scelionidae) in the management of Spodoptera spp.: potential, challenges and major benefits. CABI Agric Biosci 3:5. https://doi.org/10.1186/s43170-021-00071-6
Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400. https://doi.org/10.1146/annurev.ento.52.110405.091407
Crosa M, Oliveira A, Goyenola R, Frioni L (1999) Comportamiento simbiótico en Desmodium incanum en Uruguay. Agrociencia-Sitio En Repar 3:38–43. https://doi.org/10.2477/vol3iss1pp38-43
Davis T, Day R, Early R, et al (2018) Fall armyworm: impacts and implications for Africa. CABI Evid Note Update CABI Publ Wallingford Oxfs UK 26. https://doi.org/10.1564/v28_oct_02
De Groote H, Vanlauwe B, Rutto E et al (2010) Economic analysis of different options in integrated pest and soil fertility management in maize systems of Western Kenya. Agric Econ 41:471–482. https://doi.org/10.1111/j.1574-0862.2010.00459.x
de Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341. https://doi.org/10.1111/nph.13005
Do Nascimento DD, Vidal RL, Pimenta AA et al (2020) Crotalaria and millet as alternative controls of root-knot nematodes infecting okra. Biosci J:713–719. https://doi.org/10.14393/BJ-v36n3a2020-42248
Drinkwater LE, Midega CAO, Awuor R et al (2021) Perennial legume intercrops provide multiple below ground ecosystem services in smallholder farming systems. Agric Ecosyst Environ 320:107566. https://doi.org/10.1016/j.agee.2021.107566
Dzvene AR, Tesfuhuney W, Walker S, Ceronio G (2022) Effects of intercropping sunn hemp into maize at different times and densities on productivity under rainwater harvesting technique. Front Sustain Food Syst 6:. https://doi.org/10.3389/fsufs.2022.1009443
Ebel R, Pozas Cárdenas JG, Soria Miranda F, Cruz González J (2017) Manejo orgánico de la milpa: rendimiento de maíz, frijol y calabaza en monocultivo y policultivo. Rev TERRA Latinoam 35:149. https://doi.org/10.28940/terra.v35i2.166
Erdei AL, David AB, Savvidou EC, et al (2022) The push-pull intercrop Desmodium does not repel, but intercepts and kills pests. https://doi.org/10.1101/2022.03.08.482778
Espinosa‐Cristia JF, Feregrino J, Isla P (2019) Emerging, and old, dilemmas for food security in Latin America. J Public Aff 19:e1999. https://doi.org/10.1002/pa.1999
Fernandes FL, Sena FME, Picanco MC et al (2010) Coffee volatiles and predatory wasps (Hymenoptera: Vespidae) of the coffee leaf miner Leucoptera coffeella. Sociobiology 56:455–464
Fiaboe KKM, Fernández-Triana J, Nyamu FW, Agbodzavu KM (2017) Cotesia icipe sp. n., a new Microgastrinae wasp (Hymenoptera, Braconidae) of importance in the biological control of Lepidopteran pests in Africa. J Hymenopt Res 61:49–64. https://doi.org/10.3897/jhr.61.21015
Fininsa C (2003) Relationship between common bacterial blight severity and bean yield loss in pure stand and bean-maize intercropping systems. Int J Pest Manag 49:177–185. https://doi.org/10.1080/0967087021000049269
Fischler M (2010) Impact assessment of push–pull technology promoted by icipe and partners in eastern africa. International Centre of Insect Physiology and Ecology/icipe Science Press
Fischer J, Böhm H, Heβ J (2020) Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. Eur J Agron 112:125947. https://doi.org/10.1016/j.eja.2019.125947
Flausino BF, Machado CFM, Silva JHC et al (2022) Intercropping maize with brachiaria can be a double-edged sword strategy. Pest Manag Sci 78:5243–5250. https://doi.org/10.1002/ps.7143
Fomsgaard IS, Anon C, de la Rosa APB, et al (2011) Adding value to holy grain-providing the key tools for the exploitation of amaranth, the protein-rich grain of the Aztecs: results from a joint European-Latin American research project. In: Abstracts of papers of the American Chemical Societey. Amer Chemical Soc 1155 16th st, NW, Washington, DC 20036 USA
Gacheru E, Rao MR (2005) The potential of planted shrub fallows to combat Striga infestation on maize. Int J Pest Manag 51:91–100. https://doi.org/10.1080/09670870400028292
Galdos MV, Brown E, Rosolem CA et al (2020) Brachiaria species influence nitrate transport in soil by modifying soil structure with their root system. Sci Rep 10:5072. https://doi.org/10.1038/s41598-020-61986-0
García González MT, Coca LIR, Cancio YF, et al (2022) Biodiversidad de insectos en sistemas de policultivos de maíz (Zea mays L.): Ecosistemas 2400–2400. https://doi.org/10.7818/ECOS.2400
García González MT, Rojas JAR, González LC, Jiménez DE (2010) Policultivo (maíz-calabaza) en el control de Spodoptera frugiperda (Smith) en Fomento, Sancti Spiritus. Cent. Agríc. 37:57–64
García González MT, Rojas Rojas JA, Castellanos González L et al (2013) Policultivos para el manejo de Spodoptera frugiperda (J.E. Smith) en maíz en un agroecosistema pre montañoso. Cent. Agríc. 40:41–45
Gazal A, Ahmed Z, Lone A, Baba A (2018) Breeding climate change resilient maize and wheat for food security. Retrieved from: https://journals.aesacademy.org/index.php/aaes/article/view/02-02-013
Gebreziher HG (2020) Review on management methods of fall armyworm (Spodoptera frugiperda JE Smith) in Sub-Saharan Africa. Int J Entomol Res 5:09-14. Retrieved from: https://www.entomologyjournals.com/archives/2020/vol5/issue2/5-1–33
Germani G, Plenchette C (2005) Potential of Crotalaria species as green manure crops for the management of pathogenic nematodes and beneficial mycorrhizal fungi. Plant Soil 266:333–342. https://doi.org/10.1007/s11104-005-2281-9
Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–1105. https://doi.org/10.1002/ps.3598
Granada CE, Strochein M, Vargas LK, et al (2014) Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants. Genet Mol Biol 37:396–405. https://doi.org/10.1590/S1415-47572014000300012
Guera OGM, Castrejón-Ayala F, Robledo N et al (2020) Plant selection for the establishment of push–pull strategies for Zea mays–Spodoptera frugiperda pathosystem in Morelos. Mexico. Insects 11:349. https://doi.org/10.3390/insects11060349
Guera OGM, Castrejón-Ayala F, Robledo N et al (2021) Effectiveness of push–pull systems to fall armyworm (Spodoptera frugiperda) management in maize crops in Morelos. Mexico. Insects 12:298. https://doi.org/10.3390/insects12040298
Hadden WL, Watkins RH, Levy LW et al (1999) Carotenoid composition of marigold (Tagetes erecta) flower extract used as nutritional supplement. J Agric Food Chem 47:4189–4194. https://doi.org/10.1021/jf990096k
Hailu G, Niassy S, Zeyaur KR et al (2018) Maize-legume intercropping and push-pull for management of fall armyworm, stemborers, and Striga in Uganda. Agron J 110:2513–2522. https://doi.org/10.2134/agronj2018.02.0110
Harrison RD, Thierfelder C, Baudron F et al (2019) Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J Environ Manage 243:318–330. https://doi.org/10.1016/j.jenvman.2019.05.011
Hassanali A, Herren H, Khan ZR, et al (2008) Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Phil Trans R Soc B 363:611–621. https://doi.org/10.1098/rstb.2007.2173
Held DW, Wheeler C, Abraham CM, Pickett KM (2008) Paper wasps (Polistes spp.) attacking fall armyworm larvae (Spodoptera frugiperda) in turfgrass. Appl Turfgrass Sci 5:1–5. https://doi.org/10.1094/ATS-2008-0806-01-RS
Hoffmann WA, Haridasan M (2008) The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. Austral Ecol 33:29–36. https://doi.org/10.1111/j.1442-9993.2007.01787.x
Hoffmann WA, Lucatelli VM, Silva FJ et al (2004) Impact of the invasive alien grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers Distrib 10:99–103. https://doi.org/10.1111/j.1366-9516.2004.00063.x
Hooper AM, Caulfield JC, Hao B et al (2015) Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica. Phytochemistry 117:380–387. https://doi.org/10.1016/j.phytochem.2015.06.026
Hruska AJ (2019) Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 14:. https://doi.org/10.1079/PAVSNNR201914043
Hüber C, Zettl F, Hartung J, Müller-Lindenlauf M (2022) The impact of maize-bean intercropping on insect biodiversity. Basic Appl Ecol 61:1–9. https://doi.org/10.1016/j.baae.2022.03.005
Imathiu S (2021) Neglected and underutilized cultivated crops with respect to indigenous African leafy vegetables for food and nutrition security. J Food Secur 9:115–125. https://doi.org/10.12691/jfs-9-3-4
Iqbal N, Hussain S, Zhang X-W et al (2018) Imbalance water deficit improves the seed yield and quality of soybean. Agronomy 8:168. https://doi.org/10.3390/agronomy8090168
ISAAA (2018) Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No 54 ISAAA
Jones CM, Parry H, Tay WT et al (2019) Movement Ecology of Pest Helicoverpa: implications for ongoing spread. Annu Rev Entomol 64:277–295. https://doi.org/10.1146/annurev-ento-011118-111959
Jones R, Freeman HA, Monaco GL (2002) Improving the access of small farmers in eastern and southern Africa to global pigeonpea markets. Agricultural Research and Extension Network Paper No. 120. Agricultural Research & Extension Network
Jordon MW, Hackett TD, Aboagye-Antwi F et al (2022) Effects of distance from semi-natural habitat on fall armyworm (Spodoptera frugiperda, J. E. Smith) and its potential natural enemies in Ghana. Bull Entomol Res 112:343–353. https://doi.org/10.1017/S0007485321000894
Kaoneka SR, Saxena RK, Silim SN et al (2016) Pigeonpea breeding in eastern and southern Africa: challenges and opportunities. Plant Breed 135:148–154. https://doi.org/10.1111/pbr.12340
Kenis M, Benelli G, Biondi A, et al (2022) Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol Gen. https://doi.org/10.1127/entomologia/2022/1659
Kenis M, du Plessis H, Van den Berg J et al (2019) Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects 10:92. https://doi.org/10.3390/insects10040092
Khan ZR, Ampong-Nyarko K, Chiliswa P et al (1997) Intercropping increases parasitism of pests. Nature 388:631–632. https://doi.org/10.1038/41681
Khan ZR, Hassanali A, Pickett JA, et al (2003) Strategies for control of cereal stemborers and striga weed in maize-based farming systems in eastern Africa involving ‘push-pull’ and allelopathic tactics, respectively. Abstracts 6th Conference of the African Crop Science Society: Harnassing Crop Technologies to Alleviate Hunger and Poverty in Africa, Nairobi, 12-17 October 2003. p 7
Khan ZR, Midega CAO, Hutter NJ et al (2006) Assessment of the potential of Napier grass (Pennisetum purpureum) varieties as trap plants for management of Chilo partellus. Entomol Exp Appl 119:15–22. https://doi.org/10.1111/j.1570-7458.2006.00393.x
Khan ZR, Midega CAO, Hassanali A et al (2007) Assessment of different legumes for the control of Striga hermonthica in maize and sorghum. Crop Sci 47:730–734. https://doi.org/10.2135/cropsci2006.07.0487
Khan ZR, Midega CAO, Pittchar JO et al (2014) Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos Trans R Soc B Biol Sci 369:20120284. https://doi.org/10.1098/rstb.2012.0284
Khan ZR, Midega CAO, Wanyama JM et al (2009) Integration of edible beans (Phaseolus vulgaris L.) into the push–pull technology developed for stemborer and Striga control in maize-based cropping systems. Crop Prot 28:997–1006. https://doi.org/10.1016/j.cropro.2009.05.014
Khan ZR, Pickett JA (2008) Push-pull strategy for insect pest management. In: Capinera JL (ed) Encyclopedia of Entomology. Springer Netherlands, Dordrecht, pp 3074-3082. https://doi.org/10.1007/978.14020.6359.6.3253
Khan ZR, Pickett JA, van den Berg J et al (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962. https://doi.org/10.1002/1526-4998(200011)56:11%3c957::AID-PS236%3e3.0.CO;2-T
Khan ZR, Pickett JA, Wadhams L, Muyekho F (2001) Habitat management strategies for the control of cereal stemborers and striga in maize in Kenya. Int J Trop Insect Sci 21:375–380. https://doi.org/10.1017/S1742758400008481
Kirsch F, Hass AL, Link W, Westphal C (2023) Intercrops as foraging habitats for bees: Bees do not prefer sole legume crops over legume-cereal mixtures. Agric Ecosyst Environ 343:108268. https://doi.org/10.1016/j.agee.2022.108268
Koji S, Khan ZR, Midega C AO (2007) Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J Appl Entomol 131:186–196. https://doi.org/10.1111/j.1439‐0418.2006.01131.x
Kushida A, Suwa N, Ueda Y, Momota Y (2003) Effects of Crotalaria juncea and C. spectabilis on hatching and population density of the soybean cyst nematode, Heterodera glycines (Tylenchida: Heteroderidae). Appl Entomol Zool 38:393–399. https://doi.org/10.1303/aez.2003.393
Layek J, Das A, Mitran T, et al (2018) Cereal+ legume intercropping: an option for improving productivity and sustaining soil health. In: Legumes for soil health and sustainable management. Springer, pp 347-386. https://doi.org/10.1007/978.981.13.0253.4.11
Le Garff M (2017) Farmer’s knowledge and perception of the milpa system: case study from Sololá region, Guatemala. Dissertation, Wageningen University
le Roux MM, Boatwright JS, van Wyk B-E (2013) A global infrageneric classification system for the genus Crotalaria (Leguminosae) based on molecular and morphological evidence. TAXON 62:957–971. https://doi.org/10.12705/625.1
Liao Y-L, Yang B, Xu M-F et al (2019) First report of Telenomus remus parasitizing Spodoptera frugiperda and its field parasitism in southern China. J Hymenopt Res 73:95–102. https://doi.org/10.3897/jhr.73.39136
Lima MS, Silva PSL, Oliveira OF et al (2010) Corn yield response to weed and fall armyworm controls. Planta Daninha 28:103–111. https://doi.org/10.1590/S0100-83582010000100013
Lopez-Ridaura S, Barba-Escoto L, Reyna-Ramirez CA, et al (2021) Maize intercropping in the milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala. Sci Rep 11:3696. https://doi.org/10.1038/s41598-021-82784-2
Lowder SK, Sánchez MV, Bertini R (2021) Which farms feed the world and has farmland become more concentrated? World Dev 142:105455. https://doi.org/10.1016/j.worlddev.2021.105455
Lu Y, Zheng X, Lu Z (2019) Application of vetiver grass Vetiveria zizanioides: Poaceae (L.) as a trap plant for rice stem borer Chilo suppressalis: Crambidae (Walker) in the paddy fields. J Integr Agric 18:797–804. https://doi.org/10.1016/S2095-3119(18)62088-X
Ma X, Zheng C, Hu C et al (2011) The genus Desmodium (Fabaceae)-traditional uses in Chinese medicine, phytochemistry and pharmacology. J Ethnopharmacol 138:314–332. https://doi.org/10.1016/j.jep.2011.09.053
Maereka EK, Madakadze RM, Nyakanda C (2009) Productivity and weed suppression in maize-pumpkin intercrops in small scale farming communities of Zimbabwe. In: Proc. 9th Afr. Crop Sci. Conference, Cape Town. pp 93–102
Maine JJ, Boyles JG (2015) Bats initiate vital agroecological interactions in corn. Proc Natl Acad Sci U S A 112:12438–12443. https://doi.org/10.1073/pnas.1505413112
Mainka SA, Howard GW (2010) Climate change and invasive species: double jeopardy. Integr Zool 5:102–111. https://doi.org/10.1111/j.1749-4877.2010.00193.x
Maitra S, Shankar T, Banerjee P (2020) Potential and advantages of maize-legume intercropping system. Maize-Prod Use 1–14. https://doi.org/10.5772/intechopen.91722
Manzanero-Medina GI, Vásquez-Dávila MA, Lustre-Sánchez H, Pérez-Herrera A (2020) Ethnobotany of food plants (quelites) sold in two traditional markets of Oaxaca, Mexico. South Afr J Bot 130:215–223. https://doi.org/10.1016/j.sajb.2020.01.002
Matova PM, Kamutando CN, Magorokosho C et al (2020) Fall-armyworm invasion, control practices and resistance breeding in Sub-Saharan Africa. Crop Sci 60:2951–2970. https://doi.org/10.1002/csc2.20317
Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99:6080–6084. https://doi.org/10.1073/pnas.052125199
Maundu MP, Ngugi WG, Kabuye HSC (1999) Traditional food plants of Kenya. National Museums of Kenya
McGuigan C, Reynolds R, Wiedmer D (2002) Poverty and climate change: assessing impacts in developing countries and the initiatives of the international community. Lond Sch Econ Consult Proj Overseas Dev Inst 1-40. Retrieved from https://odi.org/en/publications/poverty-and-climate-change-assessing-impacts-in-developing-countries-and-the-initiatives-of-the-international-community/
Midega CAO, Bruce TJA, Pickett JA et al (2015) Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Res 180:118–125. https://doi.org/10.1016/j.fcr.2015.05.022
Midega CAO, Khan ZR, Van Den Berg J et al (2006) Maize stemborer predator activity under ‘push – pull’ system and Bt-maize: a potential component in managing Bt resistance. Int J Pest Manag 52:1–10. https://doi.org/10.1080/09670870600558650
Midega CAO, Pittchar JO, Pickett JA et al (2018) A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot 105:10–15. https://doi.org/10.1016/j.cropro.2017.11.003
Midega CAO, Wasonga CJ, Hooper AM et al (2017) Drought-tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya. Crop Prot 98:94–101. https://doi.org/10.1016/j.cropro.2017.03.018
Mishra SS, Moharana SK, Dash MR (2011) Review on Cleome gynandra. Int J Res Pharm Chem 1:681-689. Retrieved from: http://www.ijrpc.com/files/00062.pdf
Mohamed KI, Papes M, Williams R et al (2006) Global invasive potential of 10 parasitic witchweeds and related orobanchaceae. Ambio 35:281–288. https://doi.org/10.1579/05-r-051r.1
Mohamed SA, Wamalwa M, Obala F, et al (2021) A deadly encounter: alien invasive Spodoptera frugiperda in Africa and indigenous natural enemy, Cotesia icipe (Hymenoptera, Braconidae). Plos One 16:e0253122. https://doi.org/10.1371/journal.pone.0253122
Molina-Anzures MF, Chávez-Servia JL, Gil-Muñoz A, et al (2016) Eficiencias productivas de asociaciones de maíz, frijol y calabaza (Curcurbita pepo L.), intercaladas con árboles frutales. SciELO Argent 85:36-50. Retrieved from: http://www.scielo.org.ar/scielo.php?script=sci_arttext & pid=S1851-56572016000100010
Molina-Ochoa J, Carpenter JE, Lezama-Gutiérrez R et al (2004) Natural distribution of hymenopteran parasitoids of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae in Mexico. Fla Entomol 87:461–472. https://doi.org/10.1653/0015-4040(2004)087[0461:NDOHPO]2.0.CO;2
Montezano DG, Specht A, Sosa-Gómez DR et al (2018) Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300. https://doi.org/10.4001/003.026.0286
Morales H, Perfecto I (2000) Traditional knowledge and pest management in the Guatemalan highlands. Agric Hum Values 17:49–63. https://doi.org/10.1023/A:1007680726231
Morton JF (1994) Pito (Erythrina berteroana) and chipilin (Crotalaria longirostrata), (fabaceae) two soporific vegetables of Central America. Econ Bot 48:130–138. https://doi.org/10.1007/BF02908199
Mucheru-Muna M, Pypers P, Mugendi D et al (2010) A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Res 115:132–139. https://doi.org/10.1016/j.fcr.2009.10.013
Muli JK, Neondo JO, Kamau PK, Budambula NLM (2020) Genetic diversity and use of African indigenous vegetables especially slender leaf. Int J Veg Sci 1–19. https://doi.org/10.1080/19315260.2020.1829768
Muoni T, Barnes AP, Öborn I et al (2019) Farmer perceptions of legumes and their functions in smallholder farming systems in east Africa. Int J Agric Sustain 17:205–218. https://doi.org/10.1080/14735903.2019.1609166
Murage AW, Midega CAO, Pittchar JO et al (2015) Determinants of adoption of climate-smart push-pull technology for enhanced food security through integrated pest management in eastern Africa. Food Secur 7:709–724. https://doi.org/10.1007/s12571-015-0454-9
Mutyambai DM, Bass E, Luttermoser T et al (2019) More than “push” and “pull”? plant-soil feedbacks of maize companion cropping increase chemical plant defenses against herbivores. Front Ecol Evol 7:217. https://doi.org/10.3389/fevo.2019.00217
Mwakha FA, Budambula NLM, Neondo JO et al (2020) Witchweed’s suicidal germination: can slenderleaf help? Agronomy 10:873. https://doi.org/10.3390/agronomy10060873
Mwila M, Mhlanga B, Thierfelder C (2021) Intensifying cropping systems through doubled-up legumes in Eastern Zambia. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-87594-0
Myaka FM, Sakala WD, Adu-Gyamfi JJ et al (2006) Yields and accumulations of N and P in farmer-managed intercrops of maize–pigeonpea in semi-arid Africa. Plant Soil 285:207–220. https://doi.org/10.1007/s11104-006-9006-6
Ndayisaba PC, Kuyah S, Midega CAO et al (2020) Push‐pull technology improves maize grain yield and total aboveground biomass in maize‐based systems in Western Kenya. Field Crops Research 256:107911. https://doi.org/10.1016/j.fcr.2020.107911
Ndoro OF, Madakadze RM, Kageler S, Mashingaidze AB (2007) Indigenous knowledge of the traditional vegetable pumpkin (Cucurbita maxima/moschata) from Zimbabwe. Afr J Agric Res 2:649-655. Retrieved from: https://academicjournals.org/journal/AJAR/article-abstract/48A782837190
Ngwira AR, Aune JB, Mkwinda S (2012) On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res 132:149–157. https://doi.org/10.1016/j.fcr.2011.12.014
Nicholls CI, Altieri MA (2004) Designing species-rich, pest-suppressive agroecosystems through habitat management. Agroecosystems Anal 43:49–61. https://doi.org/10.2134/agronmonogr43.c4
Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A Review. Agron Sustain Dev 33:257–274. https://doi.org/10.1007/s13593-012-0092-y
Njira KO, Semu E, Mrema JP, Nalivata PC (2017) Biological nitrogen fixation by pigeon pea and cowpea in the doubled-up and other cropping systems on the Luvisols of Central Malawi. Afr J Agric Res 12:1341–1352. https://doi.org/10.5897/AJAR2017.12167
Njunie M, Muthiani E, Mzingirwa A et al (2022) Fodder crop adoption through Push-Pull Technology (PPT) for Fall Armyworm (FAW) control in cereals cropping systems. Int Grassl Congr Proc
Novotny IP, Tittonell P, Fuentes‐Ponce MH et al (2021) The importance of the traditional milpa in food security and nutritional self‐sufficiency in the highlands of Oaxaca, Mexico. PLoS ONE 16:e0246281. https://doi.org/10.1371/journal.pone.0246281
Nyalala S, Grout B (2007) African spider flower (Cleome gynandra L./Gynandropsis gynandra (L.) Briq.) as a red spider mite (Tetranychus urticae Koch) repellent in cut-flower rose (Rosa hybrida L.) cultivation. Sci Hortic 114:194–198. https://doi.org/10.1016/j.scienta.2007.06.010
Odeny DA (2007) The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. In: Natural resources forum. Wiley Online Library, pp 297–305
Ofomata VC, Overholt WA, Lux SA, et al (2000) Comparative studies on the fecundity, egg survival, larval feeding, and development of Chilo partellus and Chilo orichalcociliellus (Lepidoptera: Crambidae) on Five Grasses. Annals Entomol Soc Am 93:492–499. https://doi.org/10.1603/0013-8746(2000)093[0492:CSOTFE]2.0.CO;2
Olabiyi TI, Oyedunmade EEA (2007) Marigold (Tagetes erecta L.) as interplant with cowpea for the control of nematode pests. In: African Crop Science Conference Proceedings. pp 1075–1078
Oluoch MO, Pichop GN, Silué D, et al (2009) Production and harvesting systems for African indigenous vegetables. In: African indigenous vegetables in urban agriculture. Routledge, pp 177–208
Oswald A, Ransom JK (2001) Striga control and improved farm productivity using crop rotation. Crop Prot 20:113–120. https://doi.org/10.1016/S0261-2194(00)00063-6
Parsons D, Ramírez-Aviles L, Cherney JH et al (2009) Managing maize production in shifting cultivation milpa systems in Yucatán, through weed control and manure application. Agric Ecosyst Environ 133:123–134. https://doi.org/10.1016/j.agee.2009.05.011
Pereira EJG, Picanço MC, Bacci L et al (2007) Seasonal mortality factors of the coffee leafminer, Leucoptera coffeella. Bull Entomol Res 97:421–432. https://doi.org/10.1017/S0007485307005202
Polhill RM (1968) Miscellaneous notes on african species of crotalaria L.: II. Kew Bulletin 22:169–348. https://doi.org/10.2307/4107767
Postma JA, Lynch JP (2012) Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann Bot 110:521–534. https://doi.org/10.1093/aob/mcs082
Pyke B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy-behavioural control of Heliothis. Aust. Cotton Grow. 9:7-9. Retrieved from: http://www.push-pull.net/Push-Pull.pdf
Ratnadass A, Rabo Y, Salha H et al (2012) Gynandropsis gynandra (Capparidaceae) citée pour la première fois comme hôte d’Eurystylus spp. (Hemiptera, Miridae). Bull Société Entomol Fr 117:115–118. https://doi.org/10.3406/bsef.2012.2650
Ratnadass A, Zakari-Moussa O, Kadi-Kadi HA et al (2014) Potential of pigeon pea as a trap crop for control of fruit worm infestation and damage to okra. Agric for Entomol 16:426–433. https://doi.org/10.1111/afe.12072
Reddy PP (2017) Intercropping. In: Reddy PP (ed) Agro-ecological approaches to pest management for sustainable agriculture. Springer, Singapore, pp 109–131
Renwick LL, Kimaro AA, Hafner JM, et al (2020) Maize-pigeonpea intercropping outperforms monocultures under drought. Front Sustain Food Syst 4:562663. https://doi.org/10.3389/fsufs.2020.562663
Ribeiro LK, Tokarski A, Rech C, et al (2020) New record of Microtechnites bractatus (Say) (Hemiptera: Miridae) infesting Crotalaria spp. and injuries of Miridae in cultivated plants in the State of Paraná, Brazil. Rev Bras Entomol 64:e20200027. https://doi.org/10.1590/1806-9665-RBENT-2020-0027
Rios-Velasco C, Gallegos-Morales G, Cambero-Campos J et al (2011) Natural Enemies of the Fall Armyworm Spodoptera Frugiperda (lepidoptera: Noctuidae) in Coahuila, México. Fla Entomol 94:723–726. https://doi.org/10.1653/024.103.0414
Ristaino JB, Anderson PK, Bebber DP, et al (2021) The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci 118:e2022239118. https://doi.org/10.1073/pnas.2022239118
Rodingpuia C, Lalthanzara H (2021) An insight into black cutworm (Agrotis ipsilon): a glimpse on globally important crop pest. Sci Vis 21:36–42. https://doi.org/10.33493/scivis.21.02.02
Rojas JC, Kolomiets MV, Bernal JS (2018) Nonsensical choices? Fall armyworm moths choose seemingly best or worst hosts for their larvae, but neonate larvae make their own choices. Plos One 13:e0197628. https://doi.org/10.1371/journal.pone.0197628
Rosado M da C, Araújo GJ de, Pallini A, Venzon M (2021) Cover crop intercropping increases biological control in coffee crops. Biol Control 160:104675. https://doi.org/10.1016/j.biocontrol.2021.104675
Roy HE, Lawson Handley L-J, Schönrogge K et al (2011) Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids? Biocontrol 56:451–468. https://doi.org/10.1007/s10526-011-9349-7
Rugare JT, Pieterse PJ, Mabasa S (2021) Allelopathic potential of green manure cover crops on germination and early seedling development of goose grass [Eleusine indica (L.) Gaertn] and blackjack (Bidens pilosa L.). Int J Agron 2021:e6552928. https://doi.org/10.1155/2021/6552928
Rusinamhodzi L, Makoko B, Sariah J (2017) Ratooning pigeonpea in maize-pigeonpea intercropping: Productivity and seed cost reduction in eastern Tanzania. Field Crops Res 203:24–32. https://doi.org/10.1016/j.fcr.2016.12.001
Samberg LH, Gerber JS, Ramankutty N, et al (2016) Subnational distribution of average farm size and smallholder contributions to global food production. Environ Res Lett 11:124010. https://doi.org/10.1088/1748-9326/11/12/124010
Saraiva NB, Prezoto F, Fonseca M, das G, et al (2017) The social wasp Polybia fastidiosuscula Saussure (Hymenoptera: Vespidae) uses herbivore-induced maize plant volatiles to locate its prey. J Appl Entomol 141:620–629. https://doi.org/10.1111/jen.12378
Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y
Saxena KB (2008) Genetic improvement of pigeon Pea — a review. Trop Plant Biol 1:159–178. https://doi.org/10.1007/s12042-008-9014-1
Scheidegger L, Niassy S, Midega C et al (2021) The role of Desmodium intortum, Brachiaria sp. and Phaseolus vulgaris in the management of fall armyworm Spodoptera frugiperda (J. E. Smith) in maize cropping systems in Africa. Pest Manag Sci 77:2350–2357. https://doi.org/10.1002/ps.6261
Schneider S (2014) Family farming in Latin America and the Caribbean. Deep Roots 1ed Roma 26–29
Shamim Z, Razzaq H, Shahid MN, Awan MT (2021) Chapter 14 - generation of new landraces of forage species: red fescue and clover. In: Azhar MT, Wani SH (eds) Wild germplasm for genetic improvement in crop plants. Academic Press, pp 259–268
Shetty LJ, Sakr FM, Al-Obaidy K et al (2015) A brief review on medicinal plant Tagetes erecta Linn. J Appl Pharm Sci 5:091–095. https://doi.org/10.7324/JAPS.2015.510.S16
Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327. https://doi.org/10.1007/s12571-011-0140-5
Sikuku PA, Musyimi DM, Kariuki S, Okello SV (2013) Responses of slenderleaf rattlebox (Crotalaria ochroleuca) to water deficit. JBES 3(12):245–252. https://innspub.net/responses-of-slenderleaf-rattlebox-crotalaria-ochroleuca-to-water-deficit/
Silva BKR da, Sairre LAP de, Eugênio JL, et al (2022) A feasible sampling unit for monitoring Chrysoperla spp. eggs and their potential in biological control on Coffea arabica L. Int J Pest Manag 1–7. https://doi.org/10.1080/09670874.2022.2050834
Silvestri S, Sabine D, Patti K et al (2015) Households and food security: lessons from food secure households in East Africa. Agric Food Secur 4:23. https://doi.org/10.1186/s40066-015-0042-4
Silwana TT, Lucas EO (2002) The effect of planting combinations and weeding on the growth and yield of component crops of maize/bean and maize/pumpkin intercrops. J Agric Sci 138:193–200. https://doi.org/10.1017/S0021859601001861
Sisay B, Simiyu J, Malusi P et al (2018) First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J Appl Entomol 142:800–804. https://doi.org/10.1111/jen.12534
Skinner EM, Díaz-Pérez JC, Phatak SC, et al (2012) Allelopathic effects of sunnhemp (Crotalaria juncea L.) on germination of vegetables and weeds. HortScience. 47:138–142. https://doi.org/10.21273/HORTSCI.47.1.138
Sobhy IS, Tamiru A, Chiriboga Morales X et al (2022) Bioactive volatiles from push-pull companion crops repel fall armyworm and attract its parasitoids. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.883020
Sokame BM, Subramanian S, Kilalo DC et al (2020) Larval dispersal of the invasive fall armyworm, Spodoptera frugiperda, the exotic stemborer Chilo partellus, and indigenous maize stemborers in Africa. Entomol Exp Appl 168:322–331. https://doi.org/10.1111/eea.12899
Sokame BM, Tonnang HEZ, Subramanian S et al (2021) A system dynamics model for pests and natural enemies interactions. Sci Rep 11:1401. https://doi.org/10.1038/s41598-020-79553-y
Sotelo-Cardona P, Chuang W-P, Lin M-Y et al (2021) Oviposition preference not necessarily predicts offspring performance in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) on vegetable crops. Sci Rep 11:15885. https://doi.org/10.1038/s41598-021-95399-4
Southon RJ, Fernandes OA, Nascimento FS, Sumner S (2019) Social wasps are effective biocontrol agents of key lepidopteran crop pests. Proc R Soc B Biol Sci 286:20191676. https://doi.org/10.1098/rspb.2019.1676
Staller JE (2021) Maize in Andean food and culture: interdisciplinary approaches. In: Staller JE (ed) Andean Foodways. Springer International Publishing, Cham, pp 283–310
Storkey J, Bruce TJA, McMillan VE, Neve P (2019) The future of sustainable crop protection relies on increased diversity of cropping systems and landscapes. In: Agroecosystem Diversity. Elsevier, pp 199–209
Suárez JC, Anzola JA, Contreras AT et al (2022) Influence of simultaneous intercropping of maize-bean with input of inorganic or organic fertilizer on growth, development, and dry matter partitioning to yield components of two lines of common bean. Agronomy 12:1216. https://doi.org/10.3390/agronomy12051216
Tann C (2011) Pigeon pea: living up to expectations as a refuge with Bollgard II® cotton in Australia? Outlooks Pest Manag 22:41–43. https://doi.org/10.1564/22feb10
Tavares WS, Cruz I, Silva RB et al (2011) Soil organisms associated to the weed suppressant Crotalaria juncea (Fabaceae) and its importance as a refuge for natural enemies. Planta Daninha 29:473–479. https://doi.org/10.1590/S0100-83582011000300001
Tavares WS, Cruz I, Silva RB, et al (2012) Prey consumption and development of Chrysoperla externa (Neuroptera: Chrysopidae) on Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs and larvae and Anagasta kuehniella (Lepidoptera: Pyralidae) eggs. Maydica 56:Retrieved from: https://journals-crea.4science.it/index.php/maydica/article/view/668
Tay WT, Soria MF, Walsh T, et al (2013) A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. Plos One 8:e80134. https://doi.org/10.1371/journal.pone.0080134
Timilsena B, Niassy S, Kimathi E et al (2022) Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci Rep 12:539. https://doi.org/10.1038/s41598-021-04369-3
Tolosa TA, Tamiru A, Midega CAO et al (2019) Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J Chem Ecol 45:982–992. https://doi.org/10.1007/s10886‐019‐01122‐z
Tripathi MK, Chaudhary B, Sarkar SK et al (2013) Performance of sunnhemp (crotalaria juncea l.) as a summer season (pre-monsoon) crop for fibre. J Agric Sci 5:236. https://doi.org/10.5539/jas.v5n3p236
Truong P, Van TT, Pinners E (2008) Vetiver system applications technical reference manual. Vetiver Netw Int 89:Retrieved from: https://www.vetiver.org/TVN-Manual_Vf.pdf
Udayakumar A, Shivalingaswamy TM, Bakthavatsalam N (2021) Legume-based intercropping for the management of fall armyworm, Spodoptera frugiperda L. in maize. J Plant Dis Prot 128:775–779. https://doi.org/10.1007/s41348-020-00401-2
Uiso FC, Johns T (1996) Consumption patterns and nutritional contribution of Crotalaria Brevidens (Mitoo) in Tarime District, Tanzania. Ecol Food Nutrit 35:59–69. https://doi.org/10.1080/03670244.1996.9991475
Valenzuela H, Smith J (2002) Sustainable agriculture green manure crops. Trop Agric 2:1-3. Retrieved from: https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/b59e4c12-c74e-4b61-91fb-1f983b70db27/content
Van den Berg J (2006a) Oviposition preference and larval survival of Chilo partellus (Lepidoptera: Pyralidae) on Napier grass (Pennisetum purpureum) trap crops. Int J Pest Manag 52:39–44. https://doi.org/10.1080/09670870600552653
van den Berg J (2006b) Vetiver grass (Vetiveria zizanioides (L.) Nash) as trap plant for Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) and Busseola fusca (Fuller) (Lepidoptera: Noctuidae). Ann Société Entomol Fr NS 42:449–454. https://doi.org/10.1080/00379271.2006.10697478
Van den Berg J, De BAJM, Van HH (2006) Oviposition preference and survival of the maize stem borer, Busseola fusca (Lepidoptera : Noctuidae), on Napier grasses, Pennisetum spp., and maize. African Entomology 14:211–218. https://doi.org/10.10520/EJC32700
Van Rheenen HA, Hasselbach OE, Muigai SGS (1981) The effect of growing beans together with maize on the incidence of bean diseases and pests. Neth J Plant Pathol 87:193–199. https://doi.org/10.1007/BF01976985
Vanni RO (2001) El Género Desmodium (leguminosae, Desmodieae) En Argentina. Darwiniana 39:255-285. Retrieved from: https://www.jstor.org/stable/23224221
Varón de Agudelo F, Rodríguez-Chalarca J, Villalobos-Saa JC, Parody-Restrepo J (2022) Manual de enfermedades y plagas del maíz. Advanta Seed International
Vasey RA, Scholes JD, Press MC (2005) Wheat (Triticum aestivum) Is susceptible to the parasitic angiosperm Striga hermonthica, a major cereal pathogen in Africa. Phytopathology 95:1294–1300. https://doi.org/10.1094/PHYTO-95-1294
Villordo-Pineda E, González-Chavira MM, Giraldo-Carbajo P et al (2015) Identification of novel drought-tolerant associated SNPs in common bean (Phaseolus vulgaris). Front Plant Sci 6:546. https://doi.org/10.3389/fpls.2015.00546
Wang K-H, Sipes BS, Schmitt DP (2002) Crotalaria as a cover crop for nematode management: a review. Nematropica:35–58
Weinberger K, Pichop GN (2009) Marketing of African indigenous vegetables along urban and peri-urban supply chains in sub-Saharan Africa. In: African indigenous vegetables in urban agriculture. Routledge, pp 257–276
Wyckhuys KAG, O’Neil RJ (2006) Population dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize. Crop Prot 25:1180–1190. https://doi.org/10.1016/j.cropro.2006.03.003
Wyckhuys KAG, O’Neil RJ (2010) Social and ecological facets of pest management in Honduran subsistence agriculture: implications for IPM extension and natural resource management. Environ Dev Sustain 12:297–311. https://doi.org/10.1007/s10668-009-9195-2
Wyckhuys KAG, O’Neil RJ (2007) Local agro-ecological knowledge and its relationship to farmers’ pest management decision making in rural Honduras. Agric Hum Values 24:307–321. https://doi.org/10.1007/s10460-007-9068-y
Zhang C, Postma JA, York LM, Lynch JP (2014) Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann Bot 114:1719–1733. https://doi.org/10.1093/aob/mcu191