Combining Image Space and q-Space PDEs for Lossless Compression of Diffusion MR Images

Ikram Jumakulyyev1, Thomas Schultz1
1B-IT and Department of Computer Science II, University of Bonn, Bonn, Germany

Tóm tắt

Abstract

Diffusion MRI is a modern neuroimaging modality with a unique ability to acquire microstructural information by measuring water self-diffusion at the voxel level. However, it generates huge amounts of data, resulting from a large number of repeated 3D scans. Each volume samples a location in q-space, indicating the direction and strength of a diffusion sensitizing gradient during the measurement. This captures detailed information about the self-diffusion and the tissue microstructure that restricts it. Lossless compression with GZIP is widely used to reduce the memory requirements. We introduce a novel lossless codec for diffusion MRI data. It reduces file sizes by more than 30% compared to GZIP and also beats lossless codecs from the JPEG family. Our codec builds on recent work on lossless PDE-based compression of 3D medical images, but additionally exploits smoothness in q-space. We demonstrate that, compared to using only image space PDEs, q-space PDEs further improve compression rates. Moreover, implementing them with finite element methods and a custom acceleration significantly reduces computational expense. Finally, we show that our codec clearly benefits from integrating subject motion correction and slightly from optimizing the order in which the 3D volumes are coded.

Từ khóa


Tài liệu tham khảo

Dinov, I.D.: Volume and value of big healthcare data. J. Med. Stat. Inf. 4, 3 (2016)

Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)

Peter, P., Schmaltz, C., Mach, N., Mainberger, M., Weickert, J.: Beyond pure quality: Progressive modes, region of interest coding, and real time video decoding for PDE-based image compression. J. Vis. Commun. Image Represent. 31, 253–265 (2015)

Köstler, H., Stürmer, M., Freundl, C., Rüde, U.: PDE based video compression in real time. Technical Report 07–11, University Erlangen–Nürnberg, Lehrstuhl für Informatik 10 (2007)

Andris, S., Peter, P., Weickert, J.: A proof-of-concept framework for PDE-based video compression. In: Proc. Picture Coding Symposium (PCS), pp. 1–5 (2016). IEEE

Pennebaker, W.B., Mitchell, J.L.: JPEG Still Image Data Compression Standard, 1st edn. Kluwer Academic Publishers, USA (1992)

Taubman, D., Marcellin, M.: JPEG2000: Image Compression Fundamentals, Standards and Practice, 1st edn. Springer, USA (2002)

Peter, P.: Three-dimensional data compression with anisotropic diffusion. In: German Conf. on Pattern Recognition, pp. 231–236 (2013). Springer

Kil, S.-K., Lee, J.-S., Shen, D., Ryu, J., Lee, E., Min, H., Hong, S.: Lossless medical image compression using redundancy analysis. Int. J. Comput. Sci. Netw. Secur. 6(1), 50–56 (2006)

Miaou, S.-G., Ke, F.-S., Chen, S.-C.: A lossless compression method for medical image sequences using JPEG-LS and interframe coding. IEEE Trans. Inf. Technol. Biomed. 13(5), 818–821 (2009)

Jumakulyyev, I., Schultz, T.: Lossless PDE-based compression of 3D medical images. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 450–462 (2021). Springer

Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 161(2), 401–407 (1986)

Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. 103, 247–254 (1994)

Jones, D.K. (ed.): Diffusion MRI: Theory, Method, and Applications, 1st edn. Oxford University Press, United Kingdom (2011)

Deutsch, P.: RFC1952: GZIP File Format Specification Version 4.3. RFC Editor, USA (1996)

Iijima, T.: Basic theory on the normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962)

Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990)

Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: Proc. Int’l Conf. on Image Processing (ICIP), pp. 259–263 (1998). IEEE

Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 417–424 (2000)

Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)

Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based compression of cartoon-like images with homogeneous diffusion. Pattern Recogn. 44(9), 1859–1873 (2011)

Jost, F., Peter, P., Weickert, J.: Compressing flow fields with edge-aware homogeneous diffusion inpainting. In: IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 2198–2202 (2020)

Gautier, J., Le Meur, O., Guillemot, C.: Efficient depth map compression based on lossless edge coding and diffusion. In: 2012 Picture Coding Symposium, pp. 81–84 (2012). IEEE

Hoffmann, S., Mainberger, M., Weickert, J., Puhl, M.: Compression of depth maps with segment-based homogeneous diffusion. In: Int’l Conf. on Scale Space and Variational Methods in Computer Vision, pp. 319–330 (2013). Springer

Li, Y., Sjöström, M., Jennehag, U., Olsson, R.: A scalable coding approach for high quality depth image compression. In: Proc. 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4 (2012). IEEE

Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)

Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. In: Kropatsch, W., Klette, R., Solina, F., Albrecht, R. (eds.) Theoretical Foundations of Computer Vision, pp. 221–236. Springer, Vienna (1996)

You, Y.-L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000)

Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35(3), 208–226 (2009)

Hajiaboli, M.R.: An anisotropic fourth-order diffusion filter for image noise removal. Int. J. Comput. Vis. 92(2), 177–191 (2011)

Gorgi Zadeh, S., Didas, S., Wintergerst, M.W.M., Schultz, T.: Multi-scale anisotropic fourth-order diffusion improves ridge and valley localization. J. Math. Imaging Vis. 59(2), 257–269 (2017)

Li, P., Li, S.-J., Yao, Z.-A., Zhang, Z.-J.: Two anisotropic fourth-order partial differential equations for image inpainting. IET Image Process. 7(3), 260–269 (2013)

Jumakulyyev, I., Schultz, T.: Fourth-order anisotropic diffusion for inpainting and image compression. In: Özarslan, E., Schultz, T., Zhang, E., Fuster, A. (eds.) Anisotropy Across Fields and Scales, pp. 99–124. Springer, Cham (2021)

Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression. In: Kúkelová, Z., Heller, J. (eds.) Proc. Computer Vision Winter Workshop, pp. 19–26 (2014)

Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context. Signal Process. Image Commun. 46, 40–53 (2016)

Amrani, N., Serra-Sagristà, J., Peter, P., Weickert, J.: Diffusion-based inpainting for coding remote-sensing data. IEEE Geosci. Remote Sens. Lett. 14(8), 1203–1207 (2017)

Peter, P., Kaufhold, L., Weickert, J.: Turning diffusion-based image colorization into efficient color compression. IEEE Trans. Image Process. 26(2), 860–869 (2016)

Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 15(7–8), 435–455 (2002)

Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

Pierpaoli, C., Basser, P.J.: Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996)

Callaghan, P.T., Eccles, C.D., Xia, Y.: NMR microscopy of dynamic displacements: k-space and q-space imaging. J. Phys. E 21(8), 820–822 (1988)

Cheng, J., Shen, D., Yap, P.-T., Basser, P.J.: Single-and multiple-shell uniform sampling schemes for diffusion MRI using spherical codes. IEEE Trans. Med. Imaging 37(1), 185–199 (2017)

Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016)

Kassim, A.A., Yan, P., Lee, W.S., Sengupta, K.: Motion compensated lossy-to-lossless compression of 4-D medical images using integer wavelet transforms. IEEE Trans. Inf. Technol. Biomed. 9(1), 132–138 (2005)

Sanchez, V., Nasiopoulos, P., Abugharbieh, R.: Efficient lossless compression of 4-D medical images based on the advanced video coding scheme. IEEE Trans. Inf. Technol. Biomed. 12(4), 442–446 (2008)

Zeng, L., Jansen, C.P., Marsch, S., Unser, M., Hunziker, P.R.: Four-dimensional wavelet compression of arbitrarily sized echocardiographic data. IEEE Trans. Med. Imaging 21(9), 1179–1187 (2002)

Lalgudi, H.G., Bilgin, A., Marcellin, M.W., Nadar, M.S.: Compression of fMRI and ultrasound images using 4D SPIHT. IEEE Int. Conf. Image Process. (ICIP) 2, 746–749 (2005)

Liu, Y., Pearlman, W.A.: Four-dimensional wavelet compression of 4-D medical images using scalable 4-D SBHP. In: Proc. Data Compression Conference (DCC), pp. 233–242 (2007). IEEE

Belhadef, L., Maaza, Z.M.: Lossless 4D medical images compression with motion compensation and lifting wavelet transform. Int. J. Signal Process. Syst. 4(2), 168–171 (2016)

Nguyen, B.P., Chui, C.-K., Ong, S.-H., Chang, S.: An efficient compression scheme for 4-D medical images using hierarchical vector quantization and motion compensation. Comput. Biol. Med. 41(9), 843–856 (2011)

Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)

Duda, J., Tahboub, K., Gadgil, N.J., Delp, E.J.: The use of asymmetric numeral systems as an accurate replacement for Huffman coding. In: Proc. IEEE Picture Coding Symposium (PCS), pp. 65–69 (2015)

Merlet, S.: Compressive sensing in diffusion MRI. PhD thesis, Université Nice Sophia Antipolis (2013)

Tobisch, A., Stirnberg, R., Harms, R.L., Schultz, T., Roebroeck, A., Breteler, M.M., Stöcker, T.: Compressed sensing diffusion spectrum imaging for accelerated diffusion microstructure MRI in long-term population imaging. Front. Neurosci. 12, 650 (2018)

Nagoor, O.H., Whittle, J., Deng, J., Mora, B., Jones, M.W.: Lossless compression for volumetric medical images using deep neural network with local sampling. In: Proc. IEEE Int’l Conf. on Image Processing (ICIP), pp. 2815–2819 (2020)

Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In: Proc. IEEE Symp. on Security and Privacy, pp. 739–753 (2019)

Marwood, D., Massimino, P., Covell, M., Baluja, S.: Representing images in 200 bytes: Compression via triangulation. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 405–409 (2018). IEEE

Peter, P.: Fast inpainting-based compression: Combining shepard interpolation with joint inpainting and prediction. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3557–3561 (2019). IEEE

Chizhov, V., Weickert, J.: Efficient data optimisation for harmonic inpainting with finite elements. In: Int’l Conf. on Computer Analysis of Images and Patterns, pp. 432–441 (2021)

Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Berlin, Heidelberg (2012)

Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 26–37 (2011). Springer

Langtangen, H.P., Logg, A.: Solving PDEs in Python: The FEniCS Tutorial I, 1st edn. Springer, Oslo (2017)

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272 (2020)

Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

Leemans, A., Jones, D.K.: The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 61(6), 1336–1349 (2009)

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I.: Dipy Contributors: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinf. 8, 8 (2014)

Koch, A., Zhukov, A., Stöcker, T., Groeschel, S., Schultz, T.: SHORE-based detection and imputation of dropout in diffusion MRI. Magn. Reson. Med. 82(6), 2286–2298 (2019)

Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)