Combined quality and dose-volume histograms for assessing the predictive value of 99mTc-MAA SPECT/CT simulation for personalizing radioembolization treatment in liver metastatic colorectal cancer

EJNMMI Physics - Tập 7 - Trang 1-19 - 2020
Hugo Levillain1,2, Manuela Burghelea1, Ivan Duran Derijckere2, Thomas Guiot1, Akos Gulyban1, Bruno Vanderlinden1, Michael Vouche3, Patrick Flamen2, Nick Reynaert1
1Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
2Nuclear Medicine Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
3Department of Radiology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium

Tóm tắt

The relationship between the mean absorbed dose delivered to the tumour and the outcome in liver metastases from colorectal cancer patients treated with radioembolization has already been presented in several studies. The optimization of the personalized therapeutic activity to be administered is still an open challenge. In this context, how well the 99mTc-MAA SPECT/CT predicts the absorbed dose delivered by radioembolization is essential. This work aimed to analyse the differences between predictive 99mTc-MAA-SPECT/CT and post-treatment 90Y-microsphere PET/CT dosimetry at different levels. Dose heterogeneity was compared voxel-to-voxel using the quality-volume histograms, subsequently used to demonstrate how it could be used to identify potential clinical parameters that are responsible for quantitative discrepancies between predictive and post-treatment dosimetry. We analysed 130 lesions delineated in twenty-six patients. Dose-volume histograms were computed from predictive and post-treatment dosimetry for all volumes: individual lesion, whole tumoural liver (TL) and non-tumoural liver (NTL). For all dose-volume histograms, the following indices were extracted: D90, D70, D50, Dmean and D20. The results showed mostly no statistical differences between predictive and post-treatment dosimetries across all volumes and for all indices. Notably, the analysis showed no difference in terms of Dmean, confirming the results from previous studies. Quality factors representing the spread of the quality-volume histogram (QVH) curve around 0 (ideal QF = 0) were determined for lesions, TL and NTL. QVHs were classified into good (QF < 0.18), acceptable (0.18 ≤ QF < 0.3) and poor (QF ≥ 0.3) correspondence. For lesions and TL, dose- and quality-volume histograms are mostly concordant: 69% of lesions had a QF within good/acceptable categories (40% good) and 65% of TL had a QF within good/acceptable categories (23% good). For NTL, the results showed mixed results with 48% QF within the poor concordance category. Finally, it was demonstrated how QVH analysis could be used to define the parameters that predict the significant differences between predictive and post-treatment dose distributions. It was shown that the use of the QVH is feasible in assessing the predictive value of 99mTc-MAA SPECT/CT dosimetry and in estimating the absorbed dose delivered to liver metastases from colorectal cancer via 90Y-microspheres. QVH analyses could be used in combination with DVH to enhance the predictive value of 99mTc-MAA SPECT/CT dosimetry and to assist personalized activity prescription.

Tài liệu tham khảo

Hendlisz A, Van Den Eynde M, Peeters M, Maleux G, Lambert B, Vannoote J, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94. Wasan HS, Gibbs P, Sharma NK, Taieb J, Heinemann V, Ricke J, et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 2017;18:1159–71. Gibbs P, Gebski V, Van Buskirk M, Thurston K, Cade DN, Van Hazel GA, et al. Selective Internal Radiation Therapy (SIRT) with yttrium-90 resin microspheres plus standard systemic chemotherapy regimen of FOLFOX versus FOLFOX alone as first-line treatment of non-resectable liver metastases from colorectal cancer: the SIRFLOX study. BMC Cancer. 2014;14:1–10. Braat AJAT, Kappadath SC, Bruijnen RCG, van den Hoven AF, Mahvash A, de Jong HWAM, et al. Adequate SIRT activity dose is as important as adequate chemotherapy dose. Lancet Oncol. 2017;18:e636. https://doi.org/10.1016/S1470-2045(17)30811-2. Levillain H, Duran Derijckere I, Ameye L, Guiot T, Braat A, Meyer C, et al. Personalised radioembolization improves outcomes in refractory intra-hepatic cholangiocarcinoma: a multicenter study. Eur J Nucl Med Mol Imaging. 2019;46:2270–9. van den Hoven AF, Rosenbaum CENM, Elias SG, de Jong HWAM, Koopman M, Verkooijen HM, et al. Insights into the dose-response relationship of radioembolization with resin 90Y-microspheres: a prospective cohort study in patients with colorectal cancer liver metastases. J Nucl Med. 2016;57:1014–9 Available from: http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.115.166942. Grosser OS, Ulrich G, Furth C, Pech M, Ricke J, Amthauer H, et al. Intrahepatic activity distribution in radioembolization with yttrium-90–labeled resin microspheres using the body surface area method—a less than perfect model. J Vasc Interv Radiol. 2015;26:1615–21 Available from: https://www.sciencedirect.com/science/article/pii/S1051044315006995?via%3Dihub. [cited 2018 Mar 15]. Levillain H, Duran Derijckere I, Marin G, Guiot T, Vouche M, Reynaert N, et al. 90Y-PET/CT-based dosimetry after selective internal radiation therapy predicts outcome in patients with liver metastases from colorectal cancer. EJNMMI Res. 2018;8:60 Available from: https://ejnmmires.springeropen.com/articles/10.1186/s13550-018-0419-z. Willowson KP, Hayes AR, Chan DLH, Tapner M, Bernard EJ, Maher R, et al. Clinical and imaging-based prognostic factors in radioembolisation of liver metastases from colorectal cancer: a retrospective exploratory analysis. EJNMMI Res; 2017;7:46. https://doi.org/10.1186/s13550-017-0292-1. Jadoul A, Hustinx R. Comparative dosimetry between 99m Tc-MAA SPECT/CT and 90 Y PET/CT in primary and metastatic liver tumors; 2019. Kafrouni M, Allimant C, Fourcade M. et al. Analysis of differences between 99mTc-MAA SPECT- and 90Y-microsphere PET-based dosimetry for hepatocellular carcinoma selective internal radiation therapy. EJNMMI Res. 2019;9:62. https://doi.org/10.1186/s13550-019-0533-6. Gnesin S, Canetti L, Adib S, Cherbuin N, Monteiro MS, Bize P, et al. Partition model-based 99mTc-MAA SPECT/CT predictive dosimetry compared with 90Y TOF PET/CT posttreatment dosimetry in radioembolization of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med. 2016;57:1672–8. Richetta E, Pasquino M, Poli M, Cutaia C, Valero C, Tabone M, et al. PET-CT post therapy dosimetry in radioembolization with resin 90Y microspheres: comparison with pre-treatment SPECT-CT 99mTc-MAA results. Phys Med. 2019;64:16–23. https://doi.org/10.1016/j.ejmp.2019.05.025. Wondergem M, Smits ML, Elschot M, de Jong HW, Verkooijen HM, van den Bosch MA, Nijsen JF, Lam MG. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med. 2013;54(8):1294–301. https://doi.org/10.2967/jnumed.112.117614. Epub 2013 Jun 7. Ilhan H, Goritschan A, Paprottka P, Jakobs TF, Fendler WP, Todica A, et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med. 2015;56:1654–60. Håkansson K, Specht L, Aznar MC, Rasmussen JH, Bentzen SM, Vogelius IR. Prescribing and evaluating target dose in dose-painting treatment plans. Acta Oncol (Madr). 2014;53:1251–6. Paper F. Comparison of treatment planning parameters for dose painting head and neck plans delivered with tomotherapy; 2016. Vanderstraeten B, Duthoy W, Gersem W De, Neve W De, Thierens H. [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol. 2006;79:249–58. Microspheres S, Microspheres Y-. SIR-Spheres® Microspheres. 2016;2016:1–9. https://www.sirtex.com/eu/clinicians/package-insert/. Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406. Dezarn WA, Cessna JT, LA DW, Feng W, Gates VL, Halama J, et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys. 2011;38:4824. Ho S, Lau WY, Leung TWT, Chan M, Ngar YK, Johnson PJ, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23:947–52. Gulec SA, Suthar RR, Barot TC, Pennington K. The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing 90Y selective internal radiation therapy plus chemotherapy. Eur J Nucl Med Mol Imaging. 2011;38(7):1289–95. https://doi.org/10.1007/s00259-011-1758-4. Epub 2011 Apr 2. Lim Y, Bang JI, Han SW, Paeng JC, Lee KH, Kim JH, Kang GH, Jeong SY, Park KJ, Kim TY. Total lesion glycolysis (TLG) as an imaging biomarker in metastatic colorectal cancer patients treated with regorafenib. Eur J Nucl Med Mol Imaging. 2017;44(5):757–64. https://doi.org/10.1007/s00259-016-3577-0. Epub 2016 Nov 25. Woff E, Hendlisz A, Garcia C, Deleporte A, Delaunoit T, Maréchal R, et al. Monitoring metabolic response using FDG PET-CT during targeted therapy for metastatic colorectal cancer. Eur J Nucl Med Mol Imaging. 2016;43:1792–801. https://doi.org/10.1007/s00259-016-3365-x. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S. Kadoya N, Nakajima Y, Saito M, Miyabe Y, Kurooka M, Kito S, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016;96:422–31. https://doi.org/10.1016/j.ijrobp.2016.05.012. Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132: Report. Med Phys. 2017;44:e43–76. Drzymala RE, Mohan R, Brewster L, Chu J, Goitein M, Harms W, et al. Dose-volume histograms. Int J Radiat Oncol Biol Phys. 1991;21:71–8. Ferreira P, Oliveira FPM, Parafita R, Girão PS, Correia L, Costa DC, et al. Computer methods in biomechanics and biomedical engineering: imaging & visualization patient-specific gamma-index analysis to evaluate Tc-MAA as a predictor for Y glass microspheres liver radioembolisation dosimetry. Comput Methods Biomech Biomed Eng Imaging Vis. 2018;00:1–7. Nelms BE, Zhen H. and Tomé WA. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys. 2011;38:1037–44. https://doi.org/10.1118/1.3544657. Carrasco P, Jornet N, Latorre A, Eudaldo T, Ruiz A, Ribas M. 3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification. Med Phys. 2012;39:5040–9. https://doi.org/10.1118/1.4736949. Walrand S, Hesse M, Chiesa C, Lhommel R, Jamar F. The low hepatic toxicity per Gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. J Nucl Med. 2014;55:135–40 Available from: http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.113.126839. Dieudonne A, Garin E, Laffont S, Rolland Y, Lebtahi R, Leguludec D, et al. Clinical feasibility of fast 3-dimensional dosimetry of the liver for treatment planning of hepatocellular carcinoma with 90Y-microspheres. J Nucl Med. 2011;52:1930–7. Braat MNGJA, De Jong HW, Seinstra BA, Scholten MV, Van Den BMAAJ, MGEH L. Hepatobiliary scintigraphy may improve radioembolization treatment planning in HCC patients. EJNMMI Res. 2017;7(1):2. https://doi.org/10.1186/s13550-016-0248-x. Epub 2017 Jan 5. van der Velden S, Braat MNGJA, Labeur TA, Scholten MV, van Delden OM, Bennink RJ, de Jong HWAM, Lam MGEH. A Pilot Study on Hepatobiliary Scintigraphy to Monitor Regional Liver Function in 90Y Radioembolization. J Nucl Med. 2019;60(10):1430–36. https://doi.org/10.2967/jnumed.118.224394. Epub 2019 Apr 6. Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. 2014;4:1–20. Grosser OS, Ruf J, Kupitz D, Pethe A, Ulrich G, Genseke P, et al. Pharmacokinetics of 99mTc-MAA- and 99mTc-HSA-microspheres used in preradioembolization dosimetry: influence on the liver-lung shunt. J Nucl Med. 2016;57:925–7. Radinsky R, Ellis LM. Molecular determinants in the biology of liver metastasis. Surg Oncol Clin N Am. 1996;5:215–29.