Combined pigmentary and structural effects tune wing scale coloration to color vision in the swallowtail butterfly Papilio xuthus
Tóm tắt
Butterflies have well-developed color vision, presumably optimally tuned to the detection of conspecifics by their wing coloration. Here we investigated the pigmentary and structural basis of the wing colors in the Japanese yellow swallowtail butterfly, Papilio xuthus, applying spectrophotometry, scatterometry, light and electron microscopy, and optical modeling. The about flat lower lamina of the wing scales plays a crucial role in wing coloration. In the cream, orange and black scales, the lower lamina is a thin film with thickness characteristically depending on the scale type. The thin film acts as an interference reflector, causing a structural color that is spectrally filtered by the scale’s pigment. In the cream and orange scales, papiliochrome pigment is concentrated in the ridges and crossribs of the elaborate upper lamina. In the black scales the upper lamina contains melanin. The blue scales are unpigmented and their structure differs strongly from those of the pigmented scales. The distinct blue color is created by the combination of an optical multilayer in the lower lamina and a fine-structured upper lamina. The structural and pigmentary scale properties are spectrally closely related, suggesting that they are under genetic control of the same key enzymes. The wing reflectance spectra resulting from the tapestry of scales are well discriminable by the Papilio color vision system.
Tài liệu tham khảo
Arikawa K. Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol A. 2003;189:791–800.
Kinoshita M, Arikawa K. Color and polarization vision in foraging Papilio. J Comp Physiol A. 2014;200:513–26.
Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K. Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc Roy Soc B. 2008;275:947–54.
Nijhout HF. The Development and Evolution of Butterfly Wing Patterns. Washington: Smithsonian Institution Press; 1991.
Ghiradella H. Hairs, bristles, and scales. In: Locke M, editor. Microscopic anatomy of invertebrates, Vol 11A: Insecta. New York: Wiley-Liss; 1998. p. 257–87.
Ghiradella H. Insect cuticular surface modifications: scales and other structural formations. Adv Insect Physiol. 2010;38:135–80.
Umebachi Y. Papiliochrome, a new pigment group of butterfly. Zool Sci. 1985;2:163–74.
Wilts BD, IJbema N, Stavenga DG. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides). BMC Evol Biol. 2014;14:160.
Koch PB, Keys DN, Rocheleau T, Aronstein K, Blackburn M, Carroll SB, et al. Regulation of dopa decarboxylase expression during colour pattern formation in wild-type and melanic tiger swallowtail butterflies. Development. 1998;125:2303–13.
Koch PB, Behnecke B, ffrench-Constant RH. The molecular basis of melanism and mimicry in a swallowtail butterfly. Curr Biol. 2000;10:591–4.
Kinoshita S. Structural colors in the realm of nature. Singapore: World Scientific; 2008.
Biró LP, Kertész K, Vertésy Z, Márk GI, Bálint Z, Lousse V, et al. Living photonic crystals: Butterfly scales - Nanostructure and optical properties. Mat Sci Eng C. 2007;27:941–6.
Vukusic P, Sambles JR. Photonic structures in biology. Nature. 2003;424:852–5.
Kinoshita S, Yoshioka S, Fujii Y, Osanai M. Photophysics of structural color in the Morpho butterflies. Forma. 2002;17:103–21.
Michielsen K, Stavenga DG. Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. J R Soc Interface. 2008;5:85–94.
Stavenga DG, Leertouwer HL, Wilts BD. The colouration toolkit of the Pipevine Swallowtail butterfly, Battus philenor: thin films, papiliochromes, and melanin. J Comp Physiol A. 2014;200:547–61.
Stavenga DG, Leertouwer HL, Wilts BD. Colouration principles of nymphaline butterflies - thin films, melanin, ommochromes and wing scale stacking. J Exp Biol. 2014;217:2171–80.
Stavenga DG. Thin film and multilayer optics cause structural colors of many insects and birds. Mat Today Proc. 2014;1:109–21.
Stavenga DG, Leertouwer HL, Pirih P, Wehling MF. Imaging scatterometry of butterfly wing scales. Opt Express. 2009;17:193–202.
Yeh P. Optical waves in layered media. Hoboken NJ: Wiley-Interscience; 2005.
Leertouwer HL, Wilts BD, Stavenga DG. Refractive index and dispersion of butterfly scale chitin and bird feather keratin measured by interference microscopy. Opt Express. 2011;19:24061–6.
Nishikawa H, Iga M, Yamaguchi J, Saito K, Kataoka H, Suzuki Y, et al. Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes. Sci Reports. 2013;3:3184.
Schmidt K, Paulus H. Die Feinstruktur der Flügelschuppen einiger Lycaeniden (Insecta, Lepidoptera). Z Morph Tiere. 1970;66:224–41.
Ghiradella H. Light and color on the wing: structural colors in butterflies and moths. Appl Optics. 1991;30:3492–500.
Bálint Z, Kertész K, Piszter G, Vertésy Z, Biró LP. The well-tuned blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae). J R Soc Interface. 2012;9:1745–56.
Ingram AL, Parker AR. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Phil Trans R Soc B. 2008;363:2465–80.
Wasik BR, Liew SF, Lilien DA, Dinwiddie AJ, Noh H, Cao H, et al. Artificial selection for structural color on butterfly wings and comparison with natural evolution. Proc Natl Acad Sci U S A. 2014;111:12109–14.
Hidaka T, Yamashita K. Wing color pattern as the releaser of mating behavior in the swallowtail butterfly, Papilio xuthus L. (Lepidoptera: Papilionidae). Appl Ent Zool. 1975;10:263–7.