Combined computational-experimental approach to predict blood–brain barrier (BBB) permeation based on “green” salting-out thin layer chromatography supported by simple molecular descriptors
Tài liệu tham khảo
Mensch, 2009, In vivo:in vitro and in silico methods for small molecule transfer across the BBB, J. Pharm Sci., 12, 4429, 10.1002/jps.21745
Ma, 2005, Predictive model of blood-brain barrier penetration of organic compounds, Acta Pharmacol. Sin., 26, 500, 10.1111/j.1745-7254.2005.00068.x
Zhang, 2008, QSAR modeling of the blood-brain barrier permeability for diverse organic compounds, Pharm. Res., 25, 1902, 10.1007/s11095-008-9609-0
Katritzky, 2006, Correlation of blood–brain penetration using structural descriptors, Bioorg. Med. Chem., 14, 4888, 10.1016/j.bmc.2006.03.012
Bujak, 2015, Blood?brain barrier permeability mechanisms in view of quantitative structure–activity relationships (QSAR), J. Pharm. Biomed. Anal., 108, 29, 10.1016/j.jpba.2015.01.046
Hemmateenejad, 2006, Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling, J. Comput. Chem., 27, 1125, 10.1002/jcc.20437
Winkler, 2004, Modeling blood–brain barrier partitioning using Bayesian neural nets, J. Mol. Graphics Model., 22, 499, 10.1016/j.jmgm.2004.03.010
Luco, 1999, Prediction of the brain–blood distribution of a large set of drugs fromstructurally derived descriptors using partial least-squares (PLS) modeling, J. Chem. Inf. Comput. Sci., 39, 396, 10.1021/ci980411n
Liu, 2004, Development of a computational approach to predict blood-brain barrier permeability, Drug Metab. Dispos., 32, 132, 10.1124/dmd.32.1.132
Iyer, 2002, Predicting blood–brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis, Pharm, Pharm. Res., 19, 1611, 10.1023/A:1020792909928
Levin, 1980, Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability, J. Med. Chem., 23, 682, 10.1021/jm00180a022
Young, 1988, Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists, J. Med. Chem., 31, 656, 10.1021/jm00398a028
Abraham, 1994, Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain, J. Pharm. Sci., 83, 1257, 10.1002/jps.2600830915
Abraham, 2002, Application of hydrogen bonding calculations in property based drug design, Drug Discov. Today, 15, 1056, 10.1016/S1359-6446(02)02478-9
Lombardo, 1996, Computation of brain–blood partitioning of organic solutes via free energy calculations, J. Med. Chem., 39, 4750, 10.1021/jm960163r
Kaliszan, 1996, Brain/blood distribution described by a combination of partition coefficient and molecular mass, Int. J. Pharm., 145, 9, 10.1016/S0378-5173(96)04712-6
Clark, 1992, Rapid calculation of polar molecular surface area and its applicationof transport phenomena. 2. Prediction of blood–brain barrier penetration, J. Pharm. Sci., 88, 815, 10.1021/js980402t
Salminen, 1997, Relationship between immobilized artificialmembrane chromatographic retention and the brain penetration of structurallydiverse drugs, J. Pharm. Biomed. Anal., 15, 469, 10.1016/S0731-7085(96)01883-3
Norinder, 1998, Theoretical calculation and prediction of brain–blood barrier partitioning of organic solutes using MolSurf parametrization and PLS statistic, J. Pharm. Sci., 87, 952, 10.1021/js970439y
Feher, 2000, A simple model for prediction o blood–brainpartitioning, Int. J. Pharm., 201, 239, 10.1016/S0378-5173(00)00422-1
Kelder, 1999, Polar molecular surface as dominanting determinant for oral absorption and brain penetration of drugs, Pharm. Res., 16, 1514, 10.1023/A:1015040217741
Platts, 2001, Correlation and prediction of a large blood–brain distribution data set—an LFER study, Eur. J. Med. Chem., 36, 719, 10.1016/S0223-5234(01)01269-7
Keseru, 2001, High-throughput prediction of blood–brain partitioning: a thermodynamic approach, J. Chem. Inf. Comput. Sci., 41, 120, 10.1021/ci000043z
Hou, 2003, ADME evaluation in drug discovery. Modeling blood–brain barrier partitioning using simple molecular descriptors, J. Chem. Inf. Comput. Sci., 43, 2137, 10.1021/ci034134i
Pan, 2004, Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis, J. Chem. Inf. Comput. Sci., 44, 2083, 10.1021/ci0498057
Rose, 2002, Modeling blood–brain barrier partitioning using the electrotopological state, J. Chem. Inf. Comput. Sci., 42, 151, 10.1021/ci010127n
Subramanian, 2003, Computational models to predict blood–brain barrier permeation and CNS activity, J. Comput. Aided Mol. Des., 17, 643, 10.1023/B:JCAM.0000017372.32162.37
Österberg, 2000, Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics, J. Chem. Inf. Comput. Sci., 40, 1408, 10.1021/ci000065l
Bendels, 2008, In silico prediction of brain and CSF permeation of small molecules using PLS regression models, Eur. J. Med. Chem., 43, 1581, 10.1016/j.ejmech.2007.11.011
De Vrieze, 2013, Predicting drug penetration across the blood-brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography, Anal. Bioanal. Chem., 405, 6029, 10.1007/s00216-013-7015-x
Tosti, 2005, Ž. Tešić, Salting-out thin-layer chromatography of some macrolide antibiotics, J. Planar Chromatogr. Mod. TLC, 18, 415, 10.1556/JPC.18.2005.6.2
Odovic, 2006, Reversed-phase thin-layer chromatography of some angiotensin converting enzyme (ACE) inhibitors and their active metabolites, J. Serbian Chem. Soc., 71, 621, 10.2298/JSC0606621O
Flieger, 2007, Chemometric analysis of retention data from salting-out thin-layer chromatography in relation to structural parameters and biological activity of chosen sulphonamides, J. Chromatogr. B, 846, 334, 10.1016/j.jchromb.2006.08.028
Komsta, 2011, Salting-out chromatography − a practical review, Acta Chromatogr., 23, 191, 10.1556/AChrom.23.2011.2.1
Bate-Smith, 1950, Chromatographic behaviour and chemical structure I. Some naturally occuring phenolic substances, BBA Biochim. Biophys. Acta, 4, 427, 10.1016/0006-3002(50)90049-7
Bieganowska, 1995, The retention behavior of some sulfonamides on different TLC plates. 2. Comparision of the selectivity of the systems and quantitative determination of hydrophobicity parameters, J. Planar Chromatogr. Mod. TLC, 8, 122
Husain, 2004, Chromatographic behaviour of antibiotics on thin layers of an inorganic ion-exchanger, Acta Chromatogr., 14, 102
Kaliszan, 1977, The relationship between the RM values and the connectivity indices for pyrazine carbothioamide derivatives, Chromatographia, 10, 346, 10.1007/BF02274482
Kaliszan, 2007, QSRR: Quantitative structure-(chromatographic) retention relationships, Chem. Rev., 107, 3212, 10.1021/cr068412z
Nasal, 2003, Chromatographic retention parameters in medicinal chemistry and molecular pharmacology, Curr. Med. Chem., 10, 381, 10.2174/0929867033368268
Van De Waterbeemd, 1998, Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors, J. Drug Target, 6, 151, 10.3109/10611869808997889
Gramatica, 2000, Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors, Chemosphere, 41, 763, 10.1016/S0045-6535(99)00463-4
Dąbrowska, 2015, Ł. Komsta, J. KrzekK. Kokoszka,Lipophilicity study of eight cephalosporins by reversed-phase thin-layer chromatographic method, Biomed. Chromatogr., 29, 1759, 10.1002/bmc.3490