Combined computational-experimental approach to predict blood–brain barrier (BBB) permeation based on “green” salting-out thin layer chromatography supported by simple molecular descriptors

Journal of Pharmaceutical and Biomedical Analysis - Tập 143 - Trang 214-221 - 2017
Krzesimir Ciura1, Mariusz Belka2, Piotr Kawczak2, Tomasz Bączek2, Michał J. Markuszewski3, Joanna Nowakowska1
1Medical University of Gdańsk, Faculty of Pharmacy, Department of Physical Chemistry, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
2Medical University of Gdansk, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
3Medical University of Gdańsk, Faculty of Pharmacy, Department of Biopharmaceutics and Pharmacodynamics, Al. Gen. J. Hallera 107, PL 80-416, Gdańsk, Poland

Tài liệu tham khảo

Mensch, 2009, In vivo:in vitro and in silico methods for small molecule transfer across the BBB, J. Pharm Sci., 12, 4429, 10.1002/jps.21745 Ma, 2005, Predictive model of blood-brain barrier penetration of organic compounds, Acta Pharmacol. Sin., 26, 500, 10.1111/j.1745-7254.2005.00068.x Zhang, 2008, QSAR modeling of the blood-brain barrier permeability for diverse organic compounds, Pharm. Res., 25, 1902, 10.1007/s11095-008-9609-0 Katritzky, 2006, Correlation of blood–brain penetration using structural descriptors, Bioorg. Med. Chem., 14, 4888, 10.1016/j.bmc.2006.03.012 Bujak, 2015, Blood?brain barrier permeability mechanisms in view of quantitative structure–activity relationships (QSAR), J. Pharm. Biomed. Anal., 108, 29, 10.1016/j.jpba.2015.01.046 Hemmateenejad, 2006, Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling, J. Comput. Chem., 27, 1125, 10.1002/jcc.20437 Winkler, 2004, Modeling blood–brain barrier partitioning using Bayesian neural nets, J. Mol. Graphics Model., 22, 499, 10.1016/j.jmgm.2004.03.010 Luco, 1999, Prediction of the brain–blood distribution of a large set of drugs fromstructurally derived descriptors using partial least-squares (PLS) modeling, J. Chem. Inf. Comput. Sci., 39, 396, 10.1021/ci980411n Liu, 2004, Development of a computational approach to predict blood-brain barrier permeability, Drug Metab. Dispos., 32, 132, 10.1124/dmd.32.1.132 Iyer, 2002, Predicting blood–brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis, Pharm, Pharm. Res., 19, 1611, 10.1023/A:1020792909928 Levin, 1980, Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability, J. Med. Chem., 23, 682, 10.1021/jm00180a022 Young, 1988, Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists, J. Med. Chem., 31, 656, 10.1021/jm00398a028 Abraham, 1994, Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain, J. Pharm. Sci., 83, 1257, 10.1002/jps.2600830915 Abraham, 2002, Application of hydrogen bonding calculations in property based drug design, Drug Discov. Today, 15, 1056, 10.1016/S1359-6446(02)02478-9 Lombardo, 1996, Computation of brain–blood partitioning of organic solutes via free energy calculations, J. Med. Chem., 39, 4750, 10.1021/jm960163r Kaliszan, 1996, Brain/blood distribution described by a combination of partition coefficient and molecular mass, Int. J. Pharm., 145, 9, 10.1016/S0378-5173(96)04712-6 Clark, 1992, Rapid calculation of polar molecular surface area and its applicationof transport phenomena. 2. Prediction of blood–brain barrier penetration, J. Pharm. Sci., 88, 815, 10.1021/js980402t Salminen, 1997, Relationship between immobilized artificialmembrane chromatographic retention and the brain penetration of structurallydiverse drugs, J. Pharm. Biomed. Anal., 15, 469, 10.1016/S0731-7085(96)01883-3 Norinder, 1998, Theoretical calculation and prediction of brain–blood barrier partitioning of organic solutes using MolSurf parametrization and PLS statistic, J. Pharm. Sci., 87, 952, 10.1021/js970439y Feher, 2000, A simple model for prediction o blood–brainpartitioning, Int. J. Pharm., 201, 239, 10.1016/S0378-5173(00)00422-1 Kelder, 1999, Polar molecular surface as dominanting determinant for oral absorption and brain penetration of drugs, Pharm. Res., 16, 1514, 10.1023/A:1015040217741 Platts, 2001, Correlation and prediction of a large blood–brain distribution data set—an LFER study, Eur. J. Med. Chem., 36, 719, 10.1016/S0223-5234(01)01269-7 Keseru, 2001, High-throughput prediction of blood–brain partitioning: a thermodynamic approach, J. Chem. Inf. Comput. Sci., 41, 120, 10.1021/ci000043z Hou, 2003, ADME evaluation in drug discovery. Modeling blood–brain barrier partitioning using simple molecular descriptors, J. Chem. Inf. Comput. Sci., 43, 2137, 10.1021/ci034134i Pan, 2004, Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis, J. Chem. Inf. Comput. Sci., 44, 2083, 10.1021/ci0498057 Rose, 2002, Modeling blood–brain barrier partitioning using the electrotopological state, J. Chem. Inf. Comput. Sci., 42, 151, 10.1021/ci010127n Subramanian, 2003, Computational models to predict blood–brain barrier permeation and CNS activity, J. Comput. Aided Mol. Des., 17, 643, 10.1023/B:JCAM.0000017372.32162.37 Österberg, 2000, Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics, J. Chem. Inf. Comput. Sci., 40, 1408, 10.1021/ci000065l Bendels, 2008, In silico prediction of brain and CSF permeation of small molecules using PLS regression models, Eur. J. Med. Chem., 43, 1581, 10.1016/j.ejmech.2007.11.011 De Vrieze, 2013, Predicting drug penetration across the blood-brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography, Anal. Bioanal. Chem., 405, 6029, 10.1007/s00216-013-7015-x Tosti, 2005, Ž. Tešić, Salting-out thin-layer chromatography of some macrolide antibiotics, J. Planar Chromatogr. Mod. TLC, 18, 415, 10.1556/JPC.18.2005.6.2 Odovic, 2006, Reversed-phase thin-layer chromatography of some angiotensin converting enzyme (ACE) inhibitors and their active metabolites, J. Serbian Chem. Soc., 71, 621, 10.2298/JSC0606621O Flieger, 2007, Chemometric analysis of retention data from salting-out thin-layer chromatography in relation to structural parameters and biological activity of chosen sulphonamides, J. Chromatogr. B, 846, 334, 10.1016/j.jchromb.2006.08.028 Komsta, 2011, Salting-out chromatography − a practical review, Acta Chromatogr., 23, 191, 10.1556/AChrom.23.2011.2.1 Bate-Smith, 1950, Chromatographic behaviour and chemical structure I. Some naturally occuring phenolic substances, BBA Biochim. Biophys. Acta, 4, 427, 10.1016/0006-3002(50)90049-7 Bieganowska, 1995, The retention behavior of some sulfonamides on different TLC plates. 2. Comparision of the selectivity of the systems and quantitative determination of hydrophobicity parameters, J. Planar Chromatogr. Mod. TLC, 8, 122 Husain, 2004, Chromatographic behaviour of antibiotics on thin layers of an inorganic ion-exchanger, Acta Chromatogr., 14, 102 Kaliszan, 1977, The relationship between the RM values and the connectivity indices for pyrazine carbothioamide derivatives, Chromatographia, 10, 346, 10.1007/BF02274482 Kaliszan, 2007, QSRR: Quantitative structure-(chromatographic) retention relationships, Chem. Rev., 107, 3212, 10.1021/cr068412z Nasal, 2003, Chromatographic retention parameters in medicinal chemistry and molecular pharmacology, Curr. Med. Chem., 10, 381, 10.2174/0929867033368268 Van De Waterbeemd, 1998, Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors, J. Drug Target, 6, 151, 10.3109/10611869808997889 Gramatica, 2000, Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors, Chemosphere, 41, 763, 10.1016/S0045-6535(99)00463-4 Dąbrowska, 2015, Ł. Komsta, J. KrzekK. Kokoszka,Lipophilicity study of eight cephalosporins by reversed-phase thin-layer chromatographic method, Biomed. Chromatogr., 29, 1759, 10.1002/bmc.3490