Đánh giá kết hợp dựa trên đặc điểm hóa học và nghiên cứu mô hình Bayesian để xác định các chất ức chế tiềm năng cho yếu tố Xa

Springer Science and Business Media LLC - Tập 21 - Trang 4083-4099 - 2011
Meganathan Chandrasekaran1, Sugunadevi Sakkiah1, Keun Woo Lee1
1Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea

Tóm tắt

Trong nghiên cứu của chúng tôi, chúng tôi đã mô tả các mô hình pharmacophore QSAR 3D dựa trên đặc điểm hóa học với sự hỗ trợ của các chất ức chế đã biết của yếu tố Xa (FXa). Mô hình tốt nhất, Hypo1, đã được xác thực bằng nhiều kỹ thuật khác nhau để chứng minh tính vững chắc và ý nghĩa thống kê của nó. Hypo1 đã được xác thực tốt đã được sử dụng làm mẫu 3D trong sàng lọc ảo để tìm kiếm các mấu chốt tiềm năng cho sự ức chế FXa. Các phân tử hit đã được phân loại bằng cách áp dụng các bộ lọc giống như thuốc và mô phỏng phân tử. Mô hình Bayesian đã được phát triển bằng cách sử dụng các hợp chất trong tập huấn luyện, cung cấp các đặc điểm phân tử mà ưu việt hoặc không ưu việt cho việc ức chế FXa.

Từ khóa

#Yếu tố Xa #QSAR 3D #pharmacophore #mô hình Bayesian #sàng lọc ảo #ức chế

Tài liệu tham khảo

Adane L, Patel DS, Bharatam PV (2010) Shape- and chemical feature-based 3D-pharmacophore model generation and virtual screening: identification of potential leads for P. falciparum DHFR enzyme inhibition. Chem Biol Drug Des 75:115–126 Adler M, Davey DD, Phillips GB, Kim S-H, Jancarik J, Rumennik G et al (2000) Preparation, characterization, and the crystal structure of the inhibitor ZK-807834 (CI-1031) complexed with factor Xa. Biochemistry 39:12534–12542 Alban S (2005) From heparins to factor Xa inhibitors and beyond. Eur J Clin Invest 35:12–20 Ansell J (2007) Factor Xa or thrombin: is factor Xa a better target? J Thromb Haemost 5(suppl 1):65–67 Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894 Borensztajn K, Spek CA (2011) Blood coagulation factor Xa as an emerging drug target. Exp Opin Ther Targets 15:341–349 Carreiro J, Ansell J (2008) Apixaban, an oral direct Factor Xa inhibitor: awaiting the verdict. Exp Opin Investig Drugs 17:1937–1945 de Candia M, Lopopolo G, Altomare C (2009) Novel factor Xa inhibitors: a patent review. Exp Opin Ther Patents 19:1535–1580 Fischer R (1966) The principle of experimentation illustrated by a psycho-physical experiment, Chap II. Hafner Publishing, New York Gopalakrishnan B, Aparna V, Jeevan J, Ravi M, Desiraju GR (2005) A virtual screening approach for thymidine monophosphate kinase inhibitors as antitubercular agents based on docking and pharmacophore models. J Chem Inf Model 45(4):1101–1108 Hahn M (1997) Three-dimensional shape-based searching of conformationally flexible compounds. J Chem Inf Comput Sci 37:80–86 Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748 Kansal N, Silakari O, Ravikumar M (2009) A three dimensional pharmacophore modeling for KDR and Tie-2 receptor tyrosine kinase inhibitors and virtual screening for new multikinase inhibitors. QSAR Comb Sci 28:1130–1147 Klon AE, Lowrie JF, Diller DJ (2006) Improved naïve Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction. J Chem Inf Model 46:1945–1956 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25 MacKerell AD, Bashford D, Bellott, Dunbrack RL, Evanseck JD, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616 Putta S, Lemmen C, Beroza P, Greene J (2002) A novel shape-feature based approach to virtual library screening. J Chem Inf Comput Sci 42:1230–1240 Ravikumar M, Pavan S, Bairy S, Pramod AB, Sumakanth M, Kishore M et al (2008) Virtual screening of cathepsin K inhibitors using docking and pharmacophore models. Chem Biol Drug Des 72:79–90 Roehrig S, Straub A, Pohlmann J, Lampe T, Pernerstorfer J, Schlemmer K-H et al (2005) Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene-2-carboxamide (BAY 59–7939):  an oral, direct factor Xa inhibitor. J Med Chem 48:5900–5908 Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682–686 Shi Y, Sitkoff D, Zhang J, Klei HE, Kish K, Liu ECK et al (2008) Design, structure–activity relationships, X-ray crystal structure, and energetic contributions of a critical P1 Pharmacophore: 3-chloroindole-7-yl-based factor Xa inhibitors. J Med Chem 51:7541–7551 Shi Y, Li C, O’Connor SP, Zhang J, Shi M, Bisaha SN et al (2009) Aroylguanidine-based factor Xa inhibitors: the discovery of BMS-344577. Bioorg Med Chem Lett 19:6882–6889 Smellie A, Kahn SD, Teig SL (1995a) Analysis of conformational coverage. 1. Validation and estimation of coverage. J Chem Inf Comput Sci 35:285a–294a Smellie A, Kahn SD, Teig SL (1995b) Analysis of conformational coverage. 2. Applications of conformational models. J Chem Inf Comput Sci 35:295b–304b Smellie A, Teig SL, Towbin P (1995c) Poling: promoting conformational variation. J Comput Chem 16:171c–187c Srivastava HM, Chourasia M, Kumar D, Narahari Sastry G (2011) Comparison of computational methods to model DNA minor groove binders. J Chem Inf Model 51:558–571 Taha MO, Qandil AM, Zaki DD, AlDamen MA (2005) Ligand-based assessment of factor Xa binding site flexibility via elaborate pharmacophore exploration and genetic algorithm-based QSAR modeling. Eur J Med Chem 40:701–727 Wagner AB (2006) SciFinder Scholar 2006: an empirical analysis of research topic query processing. J Chem Inf Model 46:767–774 Walenga JM, Jeske WP, Hoppensteadt D, Fareed J (2003) Factor Xa inhibitors: today and beyond. Curr Opin Investig Drugs 4:272–281 Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO et al (2010) An overview of the PubChem BioAssay resource. Nucl Acids Res 38:D255–D266 Wolber G, Langer T (2004) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169 Yang Q, Du L, Tsai K-C, Wang X, Li M, You Q (2009) Pharmacophore mapping for Kv1.5 potassium channel blockers. QSAR Comb Sci 28:59–71 Yoshikawa K, Kobayashi S, Nakamoto Y, Haginoya N, Komoriya S, Yoshino T et al (2009) Design, synthesis, and SAR of cis-1,2-diaminocyclohexane derivatives as potent factor Xa inhibitors. Part II: Exploration of 6–6 fused rings as alternative S1 moieties. Bioorg Med Chem 17:8221–8233 Zhang J, Liu G, Tang Y (2009) Chemical function-based pharmacophore generation of selective κ-opioid receptor agonists by catalyst and phase. J Mol Model 15:1027–1041