Combined application of neutron activation analysis using IECF device and neural network for prediction of cement elements

Gholam Hossein Roshani1, Ehsan Eftekhari-Zadeh2, Farzin Shama3, A. Salehizadeh4
1Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran
2Department of Radiation Applications, Shahid Beheshti University, Tehran, Iran
3Electrical Engineering Department, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
4Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

S.S. Nargolwalla, Application of neutron generator to activation analysis, in proceedings of the Second Oak Ridge Conference. Oak Ridge, Tennessee; 1970

E. EftekhariZadeh, S.A.H. Feghhi, E. Bayat, Determination of the major, minor, and trace element mass fractions in Iranian cement by INAA and WDXRF. Radiochemistry 58(2), 216–220 (2016)

E. EftekhariZadeh, A. Sadighzadeh, A. Salehizadeh, E. Nazemi, G.H. Roshani, Neutron activation analysis for cement elements using an IECF device as a high energy neutron source. Anal. Methods 8, 2510 (2016)

Isotopic Neutron Sources for Neutron Activation Analysis (IAEA, Vienna, 1998)

M.E. Medhat, Fast neutron activation analysis by means of low voltage neutron generator. Results. Phys. 6, 860–862 (2016)

J.G. Wierzbicki, Californium-252 Isotope for 21st Century Radiotherapy, Nato Science Partnership Subseries: 3 (Springer, Berlin, 1997)

V. Damideh, A. Sadighzadeh, A. Koohi, A. Aslezaeem, A. Heidarnia, N. Abdollahi, F. Abbasi Davani, R. Damideh, Experimental study of the Iranian inertial electrostatic confinement fusion device as a continuous neutron generator. J. Fusion Energy 31, 109–111 (2012)

G.H. Miley, J. Sved, The IEC star-mode fusion neutron source for NAA status and next-step designs. Appl. Radiat. Isot. 53, 779–783 (2000)

G.H. Miley, A portable neutron/tunable X-ray source based on inertial electrostatic confinement. Nucl. Instrum. Methods Phys. Res. A 422, 16–20 (1999)

American Society for Testing and Materials (ASTM) C150/C150M - 2012, Standard Specification for Portland Cement. http://www.astm.org/Standards/C150.htm

G.H. Roshani, E. Nazemi, S.A.H. Feghhi, S. Setayeshi, Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurement 62, 25–32 (2015)

M. Hayati, G.H. Roshani, H. Abdi, A. Rezaei, M. Mahtab, An optimized design of anode shape based on artificial neural network for achieving highest X-ray yield in plasma focus device. J. Fusion Energy 32, 615–621 (2013)

M. Khorsandi, S.A.H. Feghhi, A. Salehizadeh, G.H. Roshani, Developing a gamma ray fluid densitometer in petroleum products monitoring applications using Artificial Neural Network. Radiat. Meas. 59, 183–187 (2013)

A. Adineh-Vand, M. Torabi, G.H. Roshani, M. Taghipour, S.A.H. Feghhi, M. Rezaei, S.M. Sadati, Application of adaptive neuro-fuzzy inference system for prediction of neutron yield of IR-IECF facility in high voltages. J. Fusion Energy 33, 13–19 (2013)

V. Dehlaghi, M. Taghipour, A. Haghparast, G.H. Roshani, A. Rezaei, S.P. Shayesteh, A. Adineh-Vand, G.R. Karimi, Prediction of the thickness of the compensator filter in radiation the rapy using computational intelligence. Med. Dosim. 40, 53–57 (2014)

E. Nazemi, G.H. Roshani, S.A.H. Feghhi, S. Setayeshi, E. EftekhariZadeh, A. Fatehi, Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 41(18), 7438–7444 (2016)

Serkan Subasi, Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique. Sci. Res. Essay 4(4), 289–297 (2009)

A. Nazari, H.H. Allahyari, A. Rahimi, H. Khanmohammadi, M. Amini, Prediction compressive strength of Portland cement-based geopolymers by artificial neural networks. Neural Comput. Appl. (2012). https://doi.org/10.1007/s00521-012-1082-3

E. Rasa, H. Ketabchi, M.H. Afshar, Predicting density and compressive strength of concrete cement paste containing silica fume using Artificial Neural Networks. Sci.Iran. 16, 33–42 (2009)

D.B. Pelowitz et al., MCNPX 2.7.E Extensions, Los Alamos National Laboratory Report LA-UR-11-01502, 2011

J.W. DurkeeJr, M.R. James, G.W. McKinney, H.R. Trellue, L.S. Waters, W.B. Wilson, Delayed-gamma signature calculation for neutron-induced fission and activation using MCNPX. Part II: simulations. Prog. Nucl. Energy 51, 828–836 (2009)

E. EftekhariZadeh, S.A.H. Feghhi, E. Bayat, G.H. Roshani, Gaussian energy broadening function of an HPGe detector in the range of 40keV to 1.46MeV. J. Exp. Phys. (2014). https://doi.org/10.1155/2014/623683

IAEA, Practical Aspects of Operating a Neutron Activation Laboratory (International Atomic Energy Agency IAEA-TECDOC-564, Vienna, 1990)