Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ứng dụng kết hợp giữa chất thải đá cẩm thạch và vi sinh vật có lợi: Hướng tới một cách tiếp cận tiết kiệm chi phí để phục hồi các khu vực bị ô nhiễm kim loại nặng
Tóm tắt
Ô nhiễm kim loại nặng (HM) và nhu cầu bảo vệ môi trường đang thu hút ngày càng nhiều sự chú ý từ giới khoa học. Việc bất hoạt các kim loại nặng vào dạng ít tan, ít di động và ít độc hại hơn, cùng với việc cải thiện sự phát triển của cây Medicago sativa L. và tích lũy kim loại nặng đã được đánh giá sau khi áp dụng chất thải đá cẩm thạch (MW) và/hoặc vi khuẩn sinh học có lợi và nấm mycorrhizae vào phân compost từ đất khai thác. Một thí nghiệm trong nhà kính đã được thực hiện để làm rõ ảnh hưởng của cả hai loại bổ sung và vi sinh vật có lợi. Việc ứng dụng chất thải đá cẩm thạch vào phân compost đã dẫn đến việc giảm tính khả dụng sinh học của các kim loại (Cu, Zn, Pb và Cd), từ đó cải thiện việc thiết lập lớp thực vật trong vòng 6 tháng nuôi trồng. Việc trồng M. sativa dưới đất bổ sung 5% MW trong 6 tháng đã làm tăng trọng lượng khô của chồi gần gấp đôi, trong khi việc cấy ghép với vi khuẩn rhizobacteria-nấm mycorrhizae kết hợp với ứng dụng 15% MW dẫn đến cải thiện gấp 3.5 lần trọng lượng khô của chồi. Thêm vào đó, việc ứng dụng bổ sung chất thải đá cẩm thạch hoặc sự kết hợp của chúng với vi khuẩn kháng kim loại dẫn đến sự giảm tích lũy kim loại nặng, làm giảm hàm lượng kim loại nặng dưới ngưỡng được khuyến nghị cho vật nuôi chăn thả. Do đó, việc ứng dụng các chất bổ sung và vi sinh vật có lợi dường như đảm bảo an toàn cho việc trồng cây cỏ alfalfa trong 6 tháng nuôi trồng. Sự kết hợp đôi giữa các chất bổ sung và vi sinh vật có lợi cho thấy tiềm năng tốt để phục hồi các loại đất bị ô nhiễm kim loại nặng và có thể là một phương pháp mới cho việc phục hồi đất bị ô nhiễm kim loại nặng.
Từ khóa
#kim loại nặng #ô nhiễm môi trường #chất thải đá cẩm thạch #vi sinh vật có lợi #Medicago sativa #phục hồi đấtTài liệu tham khảo
Ait-El-Mokhtar M, Ben Laouane R, Anli M, Boutaskni A, Wahbi S, Meddich A (2019) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic 253:429–438. https://doi.org/10.1016/j.scienta.2019.04.066
Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, ..., Meddich A (2020) Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.516818
Aubert G (1978) Méthodes d’analyses des sols. Centre régional de Documentation Pédagogique
Ben Laouane R, Meddich A, Bechtaoui N, Oufdou K, Wahbi S (2019) Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago Sativa to salt stress. Gesunde Pflanzen 71:135–146. https://doi.org/10.1007/s10343-019-00461-x
Benidire L, Madline A, Pereira SIA, Castro PML, Boularbah A (2020) Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Chemosphere 262:127803. https://doi.org/10.1016/j.chemosphere.2020.127803
Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Beth M, Scheckel K (2014) Remediation of heavy metal (loid)s contaminated soils – to mobilize or to immobilize ? J Hazard Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018
Chen F, Wang S, Mou S, Azimuddin I, Zhang D, Pan X, Al-Misned FA, Mortuza MG (2015) Physiological responses and accumulation of heavy metals and arsenic of Medicago sativa L. growing on acidic copper mine tailings in arid lands. J Geochem Explor 157:27–35. https://doi.org/10.1016/j.gexplo.2015.05.011
Dhakate R, Ratnalu GV, Laxmankumar D (2020) Evaluation of heavy metals contamination in soils at Peenya industrial area, Bengarulu, India. Arab J Geosci 13(17):880–901. https://doi.org/10.1007/s12517-020-05900-y
Dhaliwal SS, Singh J, Taneja PK, Mandal A (2019) Remediation techniques for removal of heavy metals from the soil contaminated through different sources : a review. Environ Sci Pollut Res 1–15. https://doi.org/10.1007/s11356-019-06967-1
Fagorzi C, Checcucci A, George C, Debiec-andrzejewska K, Dziewit L, Pini F (2018) Harnessing Rhizobia to improve heavy-metal phytoremediation by legumes. Genes 9:542. https://doi.org/10.3390/genes9110542
FAO (Food and Agricultural Organization) (2015) International Year of Soil. Available online: http://www.fao.org/soils-2015/fr/. Accessed 22 July 2019
Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6565. https://doi.org/10.1093/jxb/erw403
Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71. https://doi.org/10.1016/j.btre.2016.12.006
Hajji S, Turki T, Boubakri A, Ben Amor M, Mzoughi N (2017) Study of cadmium adsorption onto calcite using full factorial experiment design. Desalination Water Treat 83:222–233. https://doi.org/10.5004/dwt.2017.21079
Helaoui S, Boughattas I, Hattab S, Mkhinini M, Alphonse V, Livet A, Bousserrhine N, Banni M (2020) Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure. Chemosphere 249:126121. https://doi.org/10.1016/j.chemosphere.2020.126121
Hussain N, Abbasi T, Abbasi SA (2016) Vermiremediation of an invasive and pernicious weed salvinia (Salvinia molesta). Ecol Eng 91:432–440. https://doi.org/10.1016/j.ecoleng.2016.03.010
Kanwal S, Bano A, Malik RN (2015) Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with Increasing Zn and Cd Concentrations in Soil. Am J Plant Sci 06:2906–2923. https://doi.org/10.4236/ajps.2015.618287
Karaca O, Cameselle C, Reddy KR (2017) Acid pond sediment and mine tailings contaminated with metals: physicochemical characterization and electrokinetic remediation. Environ Earth Sci 76(12):1–12. https://doi.org/10.1007/s12665-017-6736-0
Karaca O, Cameselle C, Reddy KR (2018) Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Rev Environ Sci 17(1):205–228. https://doi.org/10.1007/s11157-017-9453-y
Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, Putten WH, Van Der Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128. https://doi.org/10.5194/soil-2-111-2016
Kumar GP, Yadav SK, Thawale PR, Singh SK, Juwarkar AA (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter - A greenhouse study. Bioresour Technol 99:2078–2082. https://doi.org/10.1016/j.biortech.2007.03.032
Kumar V, Sharma A, Kaur P, Preet G, Sidhu S, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462. https://doi.org/10.1016/j.chemosphere.2018.10.066
Kumar V, Sharma A, Pandita S, Bhardwaj R (2020) A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int J Sediment Res 35:516–526. https://doi.org/10.1016/j.ijsrc.2020.03.012
Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y (2018) Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194:495–503. https://doi.org/10.1016/j.chemosphere.2017.12.025
Lwin CS, Seo BH, Kim HU, Owens G, Kim KR (2018) Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality-a critical review. J Soil Sci Plant Nutr 64:156–167. https://doi.org/10.1080/00380768.2018.1440938
Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023
Martínez-Martínez S, Zornoza R, Gabarrón M, Gómez-Garrido M, Rosales RM, Muñoz MA, Gómez-López MD, Soriano-Disla JM, Faz A, Acosta JA (2019) Is aided phytostabilization a suitable technique for the remediation of tailings? Eur J Soil Sci 70:862–875. https://doi.org/10.1111/ejss.12727
Meddich A, Jaiti F, Bourzik W, El Asli A, Hafidi M (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic 192:468–474. https://doi.org/10.1016/j.scienta.2015.06.024
Meddich A, Oufdou K, Boutasknit A, RaklamiA, Tahiri A, Ben-Laouane R, Ait-El-Mokhtar M, Anli M, Mitsui T, Wahbi S, Baslam M (2020) Use of organic and biological fertilizers as strategies to improve crop biomass, yields and physicochemical parameters of soil. https://doi.org/10.1007/978-981-13-8660-2_9
Midhat L, Ouazzani N, Hejjaj A, Bayo J, Mandi L (2018) Phytostabilization of polymetallic contaminated soil using Medicago sativa L. in combination with powdered marble: sustainable rehabilitation. Int J Phytoremediation 20:764–772. https://doi.org/10.1080/15226514.2018.1425665
Navarro-Torre S, Barcia-Piedras JM, Caviedes MA, Pajuelo E, Redondo-Gïmez S, Rodrïguez-Llorente ID, Mateos-Naranjo E (2017) Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance. Mar Pollut Bull 117:340–347. https://doi.org/10.1016/j.marpolbul.2017.02.008
Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties of phosphorus, et al. edn, vol 9. American Society of Agronomy, Soil Science Society of America, Madison, WI, pp 403–430
Pajuelo E, Rodríguez-llorente ID, Lafuente A, Caviedes MÁ (2011) Legume-Rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, Netherlands, Dordrecht, pp 95–123
Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3 Biotech 2(2):127–134. https://doi.org/10.1007/s13205-011-0033-5
Plenchette C, Furlan V, Fortin JA (1982) Effects of different endomycorrhizal fungi on five host plants grown on calcined montmorillonite clay. J Am Soc Hortic Sci 107(4):535–538
Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011
Raklami A, Bechtaoui N, Tahiri AI, Anli M, Meddich A, Oufdou K (2019a) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.01106
Raklami A, Oufdou K, Tahiri A, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, Meddich A, Redondo-Gómez S, Pajuelo E (2019b) Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat-and metallo-resistant PGPR. Microorganisms 7(7), 212. https://doi.org/10.3390/microorganisms7070212
Raklami A, Gharmali A, AitRahou Y, Oufdou K, Meddich A (2020a) Compost and mycorrhizae application as a technique to alleviate Cd and Zn stress in Medicago sativa compost and mycorrhizae application as a technique to alleviate Cd and Zn. Int J Phytoremediation 0:1–12. https://doi.org/10.1080/15226514.2020.1803206
Raklami A, Tahiri A, Bechtaoui N, Abdelhay EG, Pajuelo E, Baslam M, Meddich A, Oufdou K (2020b) Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. J Environ Sci 99:210–221. https://doi.org/10.1016/j.jes.2020.06.032
Raklami A, Oubane M, Meddich A, Hafidi M, Marschner B, Heinze S, Oufdou K (2021) Phytotoxicity and genotoxicity as a new approach to assess heavy metals effect on Medicago sativa L.: role of metallo-resistant rhizobacteria. Environ Technol Innov 24:101833. https://doi.org/10.1016/j.eti.2021.101833
Ravindran B, Dinesh SL, Kennedy LJ, Sekaran G (2008) Vermicomposting of solid waste generated from leather industries using epigeic earthworm Eisenia foetida. Appl Biochem Biotechnol 151(2):480–488. https://doi.org/10.1007/s12010-008-8222-3
Ravindran B, Sravani R, Mandal AB, Contreras-Ramos SM, Sekaran G (2013) Instrumental evidence for biodegradation of tannery waste during vermicomposting process using Eudrilus eugeniae. J Therm Anal Calorim 111:1675–1684. https://doi.org/10.1007/s10973-011-2081-9
Rodier J (1984) L’analyse de l’eau : eaux Naturelles, eaux résiduaires, eau de mer, 7ème édition Edn. Paris: Dunod, 1365
Sagar A, Rathore P, Ramteke PW, Ramakrishna W, Reddy MS, Pecoraro L (2021) Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: key macromolecules and mechanisms. Microorganisms 9(7):1491. https://doi.org/10.3390/microorganisms9071491
Shahkolaie SS, Baranimotlagh M, Dordipour E, Khormali F (2020) Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. S Afr J Bot 128:132–140. https://doi.org/10.1016/j.sajb.2019.10.007
Tauzin C, Juste C (1986) Effet de l’application à long terme de diverses matières fertilisantes sur l’enrichissement en métaux lourds des parcelles. Rapport du contrat 4084/93. Ministère de l’environnement, France
van Herwijnen R, Hutchings TR, Al-Tabbaa A, Moffat AJ, Johns ML, Ouki SK (2007) Remediation of metal contaminated soil with mineral-amended composts. Environ Pollut 150:347–354. https://doi.org/10.1016/j.envpol.2007.01.023
Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025
Zhou Y, Zhang H, Zhang J, Zheng J (2013) Direct electrochemistry and electrocatalysis of hemoglobin on polypyrrole-Fe3O4/dodecyl trimethylammonium bromide-modified carbon paste electrode and its biosensing for hydrogen peroxide. Biocatal Biotransformation 31:313–322. https://doi.org/10.3109/10242422.2013.858709
Zornoza R, Faz A, Carmona DM, Martínez-Martínez S, Acosta JA (2012) Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments. Pedosphere 22(1):22–32. https://doi.org/10.1016/S1002-0160(11)60188-4
