Combined Model Calibration and Spatial Aggregation

Louis de Grange1, Enrique Fernández2, J De2, Magdalena Irrazábal3
1Industrial Engineering Department, Diego Portales University, Santiago, Chile
2Transport Engineering Department, Pontificia Universidad Católica de Chile, Santiago, Chile
3Fernández & De Cea Ingenieros Ltda., Santiago, Chile

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abrahamsson T, Lundqvist L (1999) Formulation and estimation of combined network equilibrium models with applications to Stockholm. Transp Sci 33:80–100

Anas A (1981) The estimation of multinomial logit models of joint location and mode choice from aggregated data. J Reg Sci 21(2):223–242. doi: 10.1111/j.1467-9787.1981.tb00696.x

Anas A (1983) Discrete choice theory, information theory and the multinomial logit and gravity models. Transp Res B 17B(I):13–23

APTECH SYSTEMS, INC (2002) Constrained maximum likelihood estimation for Gauss, Version 2.0 June 11,2002. Part Number.001860

Beckman MJ, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Yale University Press, New Haven, CT

Boyce D, Bar-Gera H (2003) Validation of multiclass urban travel forecasting models combining origin-destination, mode, and route choices. J Reg Sci 43:517–540. doi: 10.1111/1467-9787.00309

Boyce DE, Leblanc LJ, Chon KS (1988) Network equilibrium models of urban location and travel choices: a retrospective survey. J Reg Sci 28:159–183. doi: 10.1111/j.1467-9787.1988.tb01206.x

Brice S (1989) Derivation of nested transport models within a mathematical programming framework. Transp Res 23B(1):19–28

De Cea J, Fernandez JE, Soto A (2001) ESTRAUS: a simultaneous equilibrium model to analyze and evaluate multimodal urban transportation systems with multiple user classes, 9th WCTR, Seoul, Korea

De Cea J, Fernandez JE, De Grange L (2008) Combined models with hierarchical demand choices: a multi-objective entropy optimization approach. Transp Rev 28:415–438. doi: 10.1080/01441640701763128

Fisk C (1980) Some developments in equilibrium traffic assignment. Transp Res 14B:243–255

Fernandez JE, De Cea J, Florian M, Cabrera E (1994) Network equilibrium models with combined modes. Transp Sci 28:182–192

Florian M, Wu JH, He S (1999) A multi-class multi-mode variable demand network equilibrium model with hierarchical logit structures. IX Congreso Chileno de Ingeniería de Transporte 18–22 Octubre 1999, Santiago, Chile

García R, Marín A (2005) Network equilibrium with combined modes: models and solution algorithms. Transp Res B 39:223–254

Greene WH (1998) Econometric analysis, 3rd edn. Prentice Hall, New York

Ham H, Tschangho JK, Boyce D (2005) Implementation and estimation of a combined model of interregional, multimodal commodity shipments and transportation network flows. Transp Res Part B 39:65–79. doi: 10.1016/j.trb.2004.02.005

Openshaw S (1977) A geographical solution to scale and aggregation problems in region-building partitioning and spatial modelling. . Transactions of the Institute of British Geographers New Series 2(4):459–472

Oppenheim N (1995) Urban travel demand modeling. Wiley, New York

Ortuzar JD (1982) Fundamentals of discrete multimodal choice modelling. Transp Rev 2(1):56–71

Safwat K, Magnanti T (1988) A combined trip generation, trip distribution, modal split and traffic assignment model. Transp Sci 22(1):14–30

SECTRA (2002) Actualización de Encuestas de Origen y Destino de Viajes, V Etapa. Trabajo desarrollado por la Pontificia Universidad Católica de Chile, a través de su Dirección de Investigaciones Científicas y Tecnológicas (DICTUC)

Train K, McFadden D (1978) The goods/leisure trade-off and disaggregate work trip mode choice models. Transp Res 12:349–353. doi: 10.1016/0041-1647(78)90011-4