Combined 1-Deoxynojirimycin and Ibuprofen Treatment Decreases Microglial Activation, Phagocytosis and Dopaminergic Degeneration in MPTP-Treated Mice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156 -161. https://doi.org/10.1126/science.1227901
Annese V, Barcia C, Ros-Bernal F, Gomez A, Ros CM, De Pablos V, Fernandez-Villalba E, De Stefano ME, Herrero MT (2013) Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Neuropathol Appl Neurobiol 39:132–143. https://doi.org/10.1111/j.1365-2990.2012.01271.x
Annese V, Herrero MT, Di Pentima M, Gomez A, Lombardi L, Ros CM, De Pablos V, Fernandez-Villalba E, De Stefano ME (2015) Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Brain Struct Funct 220:703–727. https://doi.org/10.1007/s00429-014-0718-8
Araki T, Kumagai T, Tanaka K, Matsubara M, Kato H, Itoyama Y, Imai Y (2001) Neuroprotective effect of riluzole in MPTP-treated mice. Brain Res 918:176–181. https://doi.org/10.1016/S0006-8993(01)02944-4
Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F, Aguado-Llera D, Martínez-Pagán ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-gamma signaling, with the synergistic contribution of TNF alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142. https://doi.org/10.1038/cddis.2011.17
Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F, Gómez A, Yuste JE, Campuzano CM, de Pablos V, Fernandez-Villalba E, Herrero MT (2012) ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep 2:809. https://doi.org/10.1038/srep00809
Barcia C, Ros CM, Ros-Bernal F, Gómez A, Annese V, Carrillo-de Sauvage MA, Yuste JE, Campuzano CM, de Pablos V, Fernández-Villalba E, Herrero MT (2013) Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. J Neuroimmunol 261:60–66. https://doi.org/10.1016/j.jneuroim.2013.05.001
Becker C, Jick SS, Meier CR (2011) NSAID use and risk of Parkinson disease: a population-based case-control study. Eur J Neurol 18:1336–1342. https://doi.org/10.1111/j.1468-1331.2011.03399.x
Bernier LP, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA (2020) Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 11(1):1559. https://doi.org/10.1038/s41467-020-15267-z
Bolin LM, Strycharska-Orczyk I, Murray R, Langston JW, Di Monte D (2002) Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. J Neurochem 83:167–175. https://doi.org/10.1046/j.1471-4159.2002.01131.x
Boyle JR, McDermott E, Crowther M, Wills AD, Bell PR, Thompson MM (1998) Doxycycline inhibits elastin degradation and reduces metalloproteinase activity in a model of aneurysmal disease. J Vasc Surg 27:354–361. https://doi.org/10.1016/S0741-5214(98)70367-2
Broadhurst PL (1960) Experiments in psychogenetics. In: EISENK HJ Experiments in Personality. London: Routledge and Kegan Paul,:31–71
Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM (2004) Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arterioscler Thromb Vasc Biol 24:733–738. https://doi.org/10.1161/01.ATV.0000121571.78696.dc
Cardenas H, Bolin LM (2003) Compromised reactive microgliosis in MPTP-lesioned IL-6 KO mice. Brain Res 985:89–97. https://doi.org/10.1016/S0006-8993(03)03172-X
Chan KC, Lin MC, Huang CN, Chang WC, Wang CJ (2013) Mulberry 1-deoxynojirimycin pleiotropically inhibits glucose-stimulated vascular smooth muscle cell migration by activation of AMPK/RhoB and down-regulation of FAK. J Agric Food Chem 61:9867–9875. https://doi.org/10.1021/jf403636z
Chan EW, Lyem PY, Wong SK (2016) Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med 14:17–30. https://doi.org/10.3724/SP.J.1009.2016.00017
Choi DH, Kim EM, Son HJ, Joh TH, Kim YS, Kim D, Flint Beal M, Hwang OJ (2008) A novel intracellular role of matrix metalloproteinase-3 during apoptosis pf dopaminergic cells. J Neurochem 106:405–415. https://doi.org/10.1111/j.1471-4159.2008.05399.x
Cuenca N, Herrero MT, Angulo A, de Juan E, Martínez-Navarrete GC, López S, Barcia C, Martín-Nieto J (2005 Dec 12) Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson's disease. J Comp Neurol 493(2):261–273
Cuenca L, Gil-Martínez AL, Cano-Fernandez L, Sanchez-Rodrigo C, Estrada C, Fernandez-Villalba E, Herrero MT (2019) Parkinson's disease: a short story of 200 years. Histol Histopathol 34:573–591. https://doi.org/10.14670/HH-18-073
Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Członkowski A (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration. 5:137–143. https://doi.org/10.1006/neur.1996.0020
De Stefano ME, Herrero MT (2017) The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol 155:36–56. https://doi.org/10.1016/j.pneurobio.2016.08.002
Del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA (2007) Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 38:646–651. https://doi.org/10.1161/01.STR.0000254477.34231.cb
Doorn KJ, Moors T, Drukarch B, Berg WDJV, Lucassen PJ, Dam AMV (2014) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta neuropathol commun 2:90. https://doi.org/10.1186/s40478-014-0090-1
Ferger B, Leng A, Mura A, Hengerer B, Feldon J (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 89:822–833. https://doi.org/10.1111/j.1471-4159.2004.02399.x
Gao X, Chen H, Schwarzschild MA, Ascherio A (2011) Use of ibuprofen and risk of Parkinson disease. Neurology 76:863–869. https://doi.org/10.1212/WNL.0b013e31820f2d79
Garrido-Gil P, Belzunegui S, Sebastián WS, Izal-Azcárate A, López B, Marcilla I, Luquin MR (2009) Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Exposure Fails To Produce Delayed degeneration of Substantia Nigra neurons in Monkeys. J Neurosci Res 87:586–97
Gil-Martínez AL, Cuenca L, Estrada C, Sánchez-Rodrigo C, Fernández-Villalba E, Herrero MT (2018) Unexpected exacerbation of Neuroinflammatory response after a combined therapy in old Parkinsonian mice. Front Cell Neurosci 12:451. https://doi.org/10.3389/fncel.2018.00451
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934. https://doi.org/10.1016/j.cell.2010.02.016
Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45
Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997
Hebert G, Arsaut J, Dantzer R, Demotes-Mainard J (2003) Timecourse of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neurosci Lett 349:191–195. https://doi.org/10.1016/S0304-3940(03)00832-2
Hendrickx DAE, Van Eden CG, Schuurman KG, Hamann J, Huitinga I (2017) Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol 309:12–22. https://doi.org/10.1016/j.jneuroim.2017.04.007
Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211. https://doi.org/10.1016/j.brainresrev.2009.11.004
Herrera A, Muñoz P, Steinbusch HW, Segura-Aguilar J (2017) Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the Nigrostriatal system in Parkinson's disease? ACS Chem Neurosci 8:702–711. https://doi.org/10.1021/acschemneuro.7b00034
Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localization of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9. https://doi.org/10.1016/S0169-328X(98)00040-0
Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151. https://doi.org/10.1038/nprot.2006.342
Jung JJ, Razavian M, Kim HY, Ye Y, Golestani R, Toczek J, Zhang J (2016) Sadeghi MM (2016) matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice. Sci Rep 6:32659. https://doi.org/10.1038/srep32659
Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson's disease: current progress and future prospects. Acta Neurol Scand 134:314–326. https://doi.org/10.1111/ane.12563
Kastner A, Herrero MT, Hirsch EC, Guillen J, Luquin MR, Javoy-Agid F, Obeso JA, Agid Y (1994 Aug) Decreased tyrosine hydroxylase content in the dopaminergic neurons of MPTP-intoxicated monkeys: effect of levodopa and GM1 ganglioside therapy. Ann Neurol 36(2):206–214
Kazlauskaite A, Muqit MMK (2015) PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 282:215–223. https://doi.org/10.1111/febs.13127
Kim EM, Hwang O (2011) Role of matrix metalloproteinase-3 in neurodegeneration. J Neurochem 116:22–32. https://doi.org/10.1111/j.1471-4159.2010.07082.x
Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Experimental and Molecular Medicine 38:333–347. https://doi.org/10.1038/emm.2006.40
Kim YS, Kim SS, Chom JJ, Choim DH, Hwangm O, Shin DH, Chun HS, Beal MF, Joh TH (2005) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25:3701–3711. https://doi.org/10.1523/JNEUROSCI.4346-04.2005
Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR (2015) The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology 96:55–69. https://doi.org/10.1016/j.neuropharm.2014.10.020
Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E, Kim HS (2010) Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185:615–623. https://doi.org/10.4049/jimmunol.0903480
Lim CK, Fernández-Gomez FJ, Braidy N, Estrada C, Costa C, Costa S, Bessede A, Fernandez-Villalba E, Zinger A, Herrero MT, Guillemin GJ (2017) Involvement of the kynurenine pathway in the pathogenesis of Parkinson's disease. Prog Neurobiol 155:76–95. https://doi.org/10.1016/j.pneurobio.2015.12.009
Lorenzl S, Albers DS, Narr S, Chirichigno J, Beal MF (2002) Expression of MMP-2, MMp-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol 178:13–20. https://doi.org/10.1006/exnr.2002.8019
Mandel S, Grunblatt E, Youdim M (2000) cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: implications for idiopathic Parkinson’s disease. J Neural Transm Suppl 60:117–124. https://doi.org/10.1007/978-3-7091-6301-6_7
Marti M, Trapella C, Viaro R, Morari M (2007) The nociceptin/orphanin FQ receptor antagonist J-113397 and L-Dopa additively attenuate experimental parkinsonism through overinhibition of the nidrothalamic pathway. J Neurosci 27:1297–1307
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, Van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C (2013) M2 microglia/macrophages drive oligodendrocyte differentiation during CNS Remyelination. Nat Neurosci 16:1211–1218. https://doi.org/10.1038/nn.3469
Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994a) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150. https://doi.org/10.1016/0304-3940(94)90508-8
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994b) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fl uid from parkinsonian patients. Neurosci Lett 165:208–210. https://doi.org/10.1016/0304-3940(94)90746-3
Muramatsu Y, Kurosaki R, Mikami T, Michimata M, Matsubara M, Imai Y, Kato H, Itoyama Y, Araki T (2002) Therapeutic effect of neuronal nitric oxide synthase inhibitor (7-nitroindazole) against MPTP neurotoxicity in mice. Metab Brain Dis 17:169–182. https://doi.org/10.1023/a:1020025805287
Naeem S, Ikram R, Khan SS, Rao SS (2017) NSAIDs ameliorate cognitive and motor impairment in a model of parkinsonism induced by chlorpromazine. Pak J Pharm Sci 30:801–808
Poly TN, Islam MMR, Yang HC, Li YJ (2019) Non-steroidal anti-inflammatory drugs and risk of Parkinson's disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol 75:99–108. https://doi.org/10.1007/s00228-018-2561-y
Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274. https://doi.org/10.1046/j.1471-4159.2001.00183.x
Ren L, Yi J, Yang J, Li P, Cheng X, Mao P (2018) Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: a dose-response meta-analysis. Medicine (Baltimore). 97: 12172. https://doi.org/10.1097/MD.0000000000012172
Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027. https://doi.org/10.1038/nm.4397
Schwenkgrub J, Joniec-Maciejak I, Sznejder-Pachołek A, Wawer A, Ciesielska A, Bankiewicz K, Członkowska A, Członkowski A (2013) Effect of human interleukin-10 on the expression of nitric oxide synthases in the MPTP-based model of Parkinson's disease. Pharmacol Rep 65:44–49. https://doi.org/10.1016/S1734-1140(13)70962-9
Socias SB, González-Lizárraga F, Avila CL, Vera C, Acuña L, Sepulveda-Diaz JE, Del-Bel E, Raisman-Vozari R, Chehin RN (2018) Exploiting the therapeutic potential of ready-to-use drugs: repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 62:17–36. https://doi.org/10.1016/j.pneurobio.2017.12.002
Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345. https://doi.org/10.1016/0014-2999(86)90444-9
Suh HS, Zhao ML, Derico L, Choi N, Lee SC (2013) Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflamm 10:805. https://doi.org/10.1186/1742-2094-10-37
Swiątkiewicz M, Zaremba M, Joniec I, Członkowski A, Kurkowska-Jastrzębska I (2013) Potential neuroprotective effect of ibuprofen, insights from the mice model of Parkinson’s disease. Pharmacol Rep 65:1227–1236. https://doi.org/10.1016/S1734-1140(13)71480-4
Takasu S, Parida IS, Onose S, Ito J, Ikeda R, Yamagishi K, Higuchi O, Tanaka F, Kimura T, Miyazawa T, Nakagawa K (2018) Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin. PLoS One 13(6):e0199057. https://doi.org/10.1371/journal.pone.0199057