Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation

Metabolic Engineering - Tập 67 - Trang 186-197 - 2021
Shengbo Wu1,2, Yanting Xue1, Shujuan Yang1, Chengyang Xu1, Chunjiang Liu1,2,3, Xue Liu1,4,5, Jiaheng Liu1,4,5, Hongji Zhu1,4,5, Guang-Rong Zhao1,3,4,5, Aidong Yang6, Jianjun Qiao1,3,4,5
1School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
3Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
4Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
5Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
6Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

Tài liệu tham khảo

Arora, 2020, Expanding the chemical diversity through microorganisms co-culture: current status and outlook, Biotechnol. Adv., 40, 107521, 10.1016/j.biotechadv.2020.107521 Balagadde, 2008, A synthetic Escherichia coli predator-prey ecosystem, Mol. Syst. Biol., 4, 187, 10.1038/msb.2008.24 Beri, 2020, Development of a thermophilic coculture for corn fiber conversion to ethanol, Nat. Commun., 11, 1937, 10.1038/s41467-020-15704-z Di, 2019, Analysis of productivity and stability of synthetic microbial communities, J. R. Soc. Interface, 16, 20180859, 10.1098/rsif.2018.0859 Din, 2016, Synchronized cycles of bacterial lysis for in vivo delivery, Nature, 536, 81, 10.1038/nature18930 Dinh, 2020, Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system, ACS Synth. Biol., 9, 590, 10.1021/acssynbio.9b00451 Dinh, 2019, Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 116, 25562, 10.1073/pnas.1911144116 Doong, 2018, Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 115, 2964, 10.1073/pnas.1716920115 Du, 2020, De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation, Nat. Commun., 11, 4226, 10.1038/s41467-020-17993-w Elowitz, 2000, A synthetic oscillatory network of transcriptional regulators, Nature, 403, 335, 10.1038/35002125 Freilich, 2011, Competitive and cooperative metabolic interactions in bacterial communities, Nat. Commun., 2, 589, 10.1038/ncomms1597 Goo, 2015, Control of bacterial metabolism by quorum sensing, Trends Microbiol., 23, 567, 10.1016/j.tim.2015.05.007 Gu, 2020, Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems, ACS Synth. Biol., 9, 209, 10.1021/acssynbio.9b00290 Gupta, 2017, Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit, Nat. Biotechnol., 35, 273, 10.1038/nbt.3796 Hense, 2015, Core principles of bacterial autoinducer systems, Microbiol. Mol. Biol. Rev., 79, 153, 10.1128/MMBR.00024-14 Honjo, 2019, Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production, Metab. Eng., 55, 268, 10.1016/j.ymben.2019.08.007 Kong, 2018, Designing microbial consortia with defined social interactions, Nat. Chem. Biol., 14, 821, 10.1038/s41589-018-0091-7 Kylilis, 2018, Tools for engineering coordinated system behaviour in synthetic microbial consortia, Nat. Commun., 9, 2677, 10.1038/s41467-018-05046-2 Liang, 2015, Glycosyltransferases: mechanisms and applications in natural product development, Chem. Soc. Rev., 44, 8350, 10.1039/C5CS00600G Lindemann, 2016, Engineering microbial consortia for controllable outputs, ISME J., 10, 2077, 10.1038/ismej.2016.26 Liu, 2015, Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli, Metab. Eng., 29, 135, 10.1016/j.ymben.2015.03.009 Liu, 2019, Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli, Biotechnol. Bioeng., 116, 110, 10.1002/bit.26844 Liu, 2018, Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides, Metab. Eng., 47, 243, 10.1016/j.ymben.2018.03.016 Miano, 2020, Inducible cell-to-cell signaling for tunable dynamics in microbial communities, Nat. Commun., 11, 1193, 10.1038/s41467-020-15056-8 Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165 Minty, 2013, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, Proc. Natl. Acad. Sci. U.S.A., 110, 14592, 10.1073/pnas.1218447110 Mukherjee, 2019, Bacterial quorum sensing in complex and dynamically changing environments, Nat. Rev. Microbiol., 17, 371, 10.1038/s41579-019-0186-5 Panossian, 2010, Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy, Phytomedicine, 17, 481, 10.1016/j.phymed.2010.02.002 Papenfort, 2016, Quorum sensing signal-response systems in Gram-negative bacteria, Nat. Rev. Microbiol., 14, 576, 10.1038/nrmicro.2016.89 Saini, 2017, Synthetic consortium of Escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture, J. Agric. Food Chem., 65, 10040, 10.1021/acs.jafc.7b04275 Sandoz, 2007, Social cheating in Pseudomonas aeruginosa quorum sensing, Proc. Natl. Acad. Sci. U.S.A., 104, 15876, 10.1073/pnas.0705653104 Scott, 2017, A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis, Nat. Microbiol., 2, 17083, 10.1038/nmicrobiol.2017.83 Scott, 2016, Quorum sensing communication modules for microbial consortia, ACS Synth. Biol., 5, 969, 10.1021/acssynbio.5b00286 Soma, 2015, Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production, Metab. Eng., 30, 7, 10.1016/j.ymben.2015.04.005 Song, 2009, Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem, Nat. Chem. Biol., 5, 929, 10.1038/nchembio.244 Stephens, 2020, Synthetic biology for manipulating quorum sensing in microbial consortia, Trends Microbiol., 28, 633, 10.1016/j.tim.2020.03.009 Stephens, 2019, Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition, Nat. Commun., 10, 4129, 10.1038/s41467-019-12027-6 Tsoi, 2019, Emerging strategies for engineering microbial communities, Biotechnol. Adv., 37, 107372, 10.1016/j.biotechadv.2019.03.011 Vannini, 2002, The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA, EMBO J., 21, 4393, 10.1093/emboj/cdf459 Walther, 2016, Microbial production of propanol, Biotechnol. Adv., 34, 984, 10.1016/j.biotechadv.2016.05.011 Wang, 2019, Synthetic cell-cell communication in a three-species consortium for one-step vitamin C fermentation, Biotechnol. Lett., 41, 951, 10.1007/s10529-019-02705-2 Wang, 2020, Recent advances in modular co-culture engineering for synthesis of natural products, Curr. Opin. Biotechnol., 62, 65, 10.1016/j.copbio.2019.09.004 Wellington, 2019, Quorum sensing signal selectivity and the potential for interspecies cross talk, mBio, 10, 10.1128/mBio.00146-19 Wu, 2020, Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states, Nat. Commun., 11, 5521, 10.1038/s41467-020-19432-2 Wu, 2020, Quorum sensing for population-level control of bacteria and potential therapeutic applications, Cell. Mol. Life Sci., 77, 1319, 10.1007/s00018-019-03326-8 Wu, 2021, Vertical and horizontal quorum-sensing-based multicellular communications, Trends Microbiol., 10.1016/j.tim.2021.04.006 Xavier, 2011, Social interaction in synthetic and natural microbial communities, Mol. Syst. Biol., 7, 483, 10.1038/msb.2011.16 Yang, 2020, Metabolic engineering of Escherichia coli for natural product biosynthesis, Trends Biotechnol., 38, 745, 10.1016/j.tibtech.2019.11.007 Yao, 2013, Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway, Metab. Eng., 19, 79, 10.1016/j.ymben.2013.06.001 You, 2004, Programmed population control by cell-cell communication and regulated killing, Nature, 428, 868, 10.1038/nature02491 Zhang, 2015, Engineering Escherichia coli coculture systems for the production of biochemical products, Proc. Natl. Acad. Sci. U.S.A., 112, 8266, 10.1073/pnas.1506781112 Zhang, 2016, Modular co-culture engineering, a new approach for metabolic engineering, Metab. Eng., 37, 114, 10.1016/j.ymben.2016.05.007 Zhou, 2015, Distributing a metabolic pathway among a microbial consortium enhances production of natural products, Nat. Biotechnol., 33, 377, 10.1038/nbt.3095