Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation
Tài liệu tham khảo
Arora, 2020, Expanding the chemical diversity through microorganisms co-culture: current status and outlook, Biotechnol. Adv., 40, 107521, 10.1016/j.biotechadv.2020.107521
Balagadde, 2008, A synthetic Escherichia coli predator-prey ecosystem, Mol. Syst. Biol., 4, 187, 10.1038/msb.2008.24
Beri, 2020, Development of a thermophilic coculture for corn fiber conversion to ethanol, Nat. Commun., 11, 1937, 10.1038/s41467-020-15704-z
Di, 2019, Analysis of productivity and stability of synthetic microbial communities, J. R. Soc. Interface, 16, 20180859, 10.1098/rsif.2018.0859
Din, 2016, Synchronized cycles of bacterial lysis for in vivo delivery, Nature, 536, 81, 10.1038/nature18930
Dinh, 2020, Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system, ACS Synth. Biol., 9, 590, 10.1021/acssynbio.9b00451
Dinh, 2019, Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 116, 25562, 10.1073/pnas.1911144116
Doong, 2018, Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 115, 2964, 10.1073/pnas.1716920115
Du, 2020, De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation, Nat. Commun., 11, 4226, 10.1038/s41467-020-17993-w
Elowitz, 2000, A synthetic oscillatory network of transcriptional regulators, Nature, 403, 335, 10.1038/35002125
Freilich, 2011, Competitive and cooperative metabolic interactions in bacterial communities, Nat. Commun., 2, 589, 10.1038/ncomms1597
Goo, 2015, Control of bacterial metabolism by quorum sensing, Trends Microbiol., 23, 567, 10.1016/j.tim.2015.05.007
Gu, 2020, Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems, ACS Synth. Biol., 9, 209, 10.1021/acssynbio.9b00290
Gupta, 2017, Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit, Nat. Biotechnol., 35, 273, 10.1038/nbt.3796
Hense, 2015, Core principles of bacterial autoinducer systems, Microbiol. Mol. Biol. Rev., 79, 153, 10.1128/MMBR.00024-14
Honjo, 2019, Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production, Metab. Eng., 55, 268, 10.1016/j.ymben.2019.08.007
Kong, 2018, Designing microbial consortia with defined social interactions, Nat. Chem. Biol., 14, 821, 10.1038/s41589-018-0091-7
Kylilis, 2018, Tools for engineering coordinated system behaviour in synthetic microbial consortia, Nat. Commun., 9, 2677, 10.1038/s41467-018-05046-2
Liang, 2015, Glycosyltransferases: mechanisms and applications in natural product development, Chem. Soc. Rev., 44, 8350, 10.1039/C5CS00600G
Lindemann, 2016, Engineering microbial consortia for controllable outputs, ISME J., 10, 2077, 10.1038/ismej.2016.26
Liu, 2015, Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli, Metab. Eng., 29, 135, 10.1016/j.ymben.2015.03.009
Liu, 2019, Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli, Biotechnol. Bioeng., 116, 110, 10.1002/bit.26844
Liu, 2018, Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides, Metab. Eng., 47, 243, 10.1016/j.ymben.2018.03.016
Miano, 2020, Inducible cell-to-cell signaling for tunable dynamics in microbial communities, Nat. Commun., 11, 1193, 10.1038/s41467-020-15056-8
Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165
Minty, 2013, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, Proc. Natl. Acad. Sci. U.S.A., 110, 14592, 10.1073/pnas.1218447110
Mukherjee, 2019, Bacterial quorum sensing in complex and dynamically changing environments, Nat. Rev. Microbiol., 17, 371, 10.1038/s41579-019-0186-5
Panossian, 2010, Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy, Phytomedicine, 17, 481, 10.1016/j.phymed.2010.02.002
Papenfort, 2016, Quorum sensing signal-response systems in Gram-negative bacteria, Nat. Rev. Microbiol., 14, 576, 10.1038/nrmicro.2016.89
Saini, 2017, Synthetic consortium of Escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture, J. Agric. Food Chem., 65, 10040, 10.1021/acs.jafc.7b04275
Sandoz, 2007, Social cheating in Pseudomonas aeruginosa quorum sensing, Proc. Natl. Acad. Sci. U.S.A., 104, 15876, 10.1073/pnas.0705653104
Scott, 2017, A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis, Nat. Microbiol., 2, 17083, 10.1038/nmicrobiol.2017.83
Scott, 2016, Quorum sensing communication modules for microbial consortia, ACS Synth. Biol., 5, 969, 10.1021/acssynbio.5b00286
Soma, 2015, Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production, Metab. Eng., 30, 7, 10.1016/j.ymben.2015.04.005
Song, 2009, Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem, Nat. Chem. Biol., 5, 929, 10.1038/nchembio.244
Stephens, 2020, Synthetic biology for manipulating quorum sensing in microbial consortia, Trends Microbiol., 28, 633, 10.1016/j.tim.2020.03.009
Stephens, 2019, Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition, Nat. Commun., 10, 4129, 10.1038/s41467-019-12027-6
Tsoi, 2019, Emerging strategies for engineering microbial communities, Biotechnol. Adv., 37, 107372, 10.1016/j.biotechadv.2019.03.011
Vannini, 2002, The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA, EMBO J., 21, 4393, 10.1093/emboj/cdf459
Walther, 2016, Microbial production of propanol, Biotechnol. Adv., 34, 984, 10.1016/j.biotechadv.2016.05.011
Wang, 2019, Synthetic cell-cell communication in a three-species consortium for one-step vitamin C fermentation, Biotechnol. Lett., 41, 951, 10.1007/s10529-019-02705-2
Wang, 2020, Recent advances in modular co-culture engineering for synthesis of natural products, Curr. Opin. Biotechnol., 62, 65, 10.1016/j.copbio.2019.09.004
Wellington, 2019, Quorum sensing signal selectivity and the potential for interspecies cross talk, mBio, 10, 10.1128/mBio.00146-19
Wu, 2020, Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states, Nat. Commun., 11, 5521, 10.1038/s41467-020-19432-2
Wu, 2020, Quorum sensing for population-level control of bacteria and potential therapeutic applications, Cell. Mol. Life Sci., 77, 1319, 10.1007/s00018-019-03326-8
Wu, 2021, Vertical and horizontal quorum-sensing-based multicellular communications, Trends Microbiol., 10.1016/j.tim.2021.04.006
Xavier, 2011, Social interaction in synthetic and natural microbial communities, Mol. Syst. Biol., 7, 483, 10.1038/msb.2011.16
Yang, 2020, Metabolic engineering of Escherichia coli for natural product biosynthesis, Trends Biotechnol., 38, 745, 10.1016/j.tibtech.2019.11.007
Yao, 2013, Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway, Metab. Eng., 19, 79, 10.1016/j.ymben.2013.06.001
You, 2004, Programmed population control by cell-cell communication and regulated killing, Nature, 428, 868, 10.1038/nature02491
Zhang, 2015, Engineering Escherichia coli coculture systems for the production of biochemical products, Proc. Natl. Acad. Sci. U.S.A., 112, 8266, 10.1073/pnas.1506781112
Zhang, 2016, Modular co-culture engineering, a new approach for metabolic engineering, Metab. Eng., 37, 114, 10.1016/j.ymben.2016.05.007
Zhou, 2015, Distributing a metabolic pathway among a microbial consortium enhances production of natural products, Nat. Biotechnol., 33, 377, 10.1038/nbt.3095