Combination of polynomial chaos and Kriging for reduced-order model of reacting flow applications

Results in Engineering - Tập 10 - Trang 100223 - 2021
Gianmarco Aversano1,2, Giuseppe D’Alessio3,1,2, Axel Coussement1,2, Francesco Contino4,1, Alessandro Parente1,2
1Université Libre de Bruxelles and Vrije Universiteit Brussel, Combustion and Robust Optimization Group (BURN), Brussels, Belgium
2Université Libre de Bruxelles, Aero-Thermo-Mechanics Departement, Avenue F.D. Roosevelt 51, CP 165/41, 1050, Brussels, Belgium
3CRECK Modeling Lab, Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20131, Milano, Italy
4Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering, Louvain-la-Neuve, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kabuba, 2020, Ion-exchange process for the removal of ni (ii) and co (ii) from wastewater using modified clinoptilolite: modeling by response surface methodology and artificial neural network, Results in Engineering, 8, 100189, 10.1016/j.rineng.2020.100189

Lang, 2011, Optimization of igcc processes with reduced order cfd models, Comput. Chem. Eng., 35, 1705, 10.1016/j.compchemeng.2011.01.018

Lang, 2009, Reduced order model based on principal component analysis for process simulation and optimization, Energy Fuels, 23, 1695, 10.1021/ef800984v

G. Aversano, A. Bellemans, Z. Li, A. Coussement, O. Gicquel, A. Parente, Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications, Comput. Chem. Eng. 121. doi:10.1016/j.compchemeng.2018.09.022.

G. Aversano, M. Ferrarotti, A. Parente, Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations, Proc. Combust. Inst.:10.1016/j.proci.2020.06.045.

Xiao, 2013, Constrained Proper Orthogonal Decomposition based on QR-factorization for aerodynamical shape optimization, Appl. Math. Comput., 223, 254, 10.1016/j.amc.2013.07.086

R. Schöbi, B. Sudret, J. Wiart, HAL Id : hal-01432195.

Schöbi, 2014, 1

Boukouvala, 2013, Reduced-order discrete element method modeling, Chem. Eng. Sci., 95, 12, 10.1016/j.ces.2013.01.053

Inazumi, 2020, Artificial intelligence system for supporting soil classification, Results in Engineering, 8, 100188, 10.1016/j.rineng.2020.100188

Klotz, 2021, Prediction of the business jet global 7500 wing deformed shape using fiber bragg gratings and neural network, Results in Engineering, 9, 100190, 10.1016/j.rineng.2020.100190

Cawley, 2010, On over-fitting in model selection and subsequent selection bias in performance evaluation, J. Mach. Learn. Res., 11, 2079

A. Parente, J. C. Sutherland, Principal component analysis of turbulent combustion data: data pre-processing and manifold sensitivity, Combust. Flame:10.1016/j.combustflame.2012.09.016.

Gillis, 2012, Sparse and unique nonnegative matrix factorization through data preprocessing, J. Mach. Learn. Res., 13, 3349

Frouzakis, 2000, Proper orthogonal decomposition of direct numerical simulation data: data reduction and observer, Construction, 28, 75

Paatero, 1994, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111, 10.1002/env.3170050203

Lebrun, 2009, An innovating analysis of the Nataf transformation from the copula viewpoint, Probabilist. Eng. Mech., 24, 312, 10.1016/j.probengmech.2008.08.001

Constantine, 2014, Active subspace methods in theory and practice: applications to kriging surfaces, SIAM J. Sci. Comput., 36, A1500, 10.1137/130916138

Lophaven, 2002, 1

Seeger, 2004, vol. 14

Goodfellow, 2016

Bishop, 2013, vol. 53

Gholamrezaei, 2007, Rotated general regression neural network, IEEE International Conference on Neural Networks - Conference Proceedings, 2, 1959

Cao, 2018, Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: a computational and experimental study, Combust. Theor. Model., 22, 316, 10.1080/13647830.2017.1403051

Cao, 2015, A computational and experimental study of coflow laminar methane/air diffusion flames: effects of fuel dilution, inlet velocity, and gravity, Proc. Combust. Inst., 35, 897, 10.1016/j.proci.2014.05.138