Combination of heuristic optimal partner bands for variable selection in near‐infrared spectral analysis

Journal of Chemometrics - Tập 32 Số 11 - 2018
Jin Zhang1, Xiaoyu Cui1, Wensheng Cai1, Xueguang Shao2,1,3,4,5
1Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
2Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
3State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
4Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
5Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashgar University, Kashgar 844006, China

Tóm tắt

AbstractVariable selection plays a critical role in the analysis of near‐infrared (NIR) spectra. A method for variable selection based on the principle of the successive projection algorithm (SPA) and optimal partner wavelength combination (OPWC) was proposed for NIR spectral analysis. The method determines a number of knot variables with sufficient independence by SPA, and candidate variable bands with a definite width are defined. The cooperative effect of the bands is then evaluated with the partial least squares regression model by using the method of OPWC. The performance of the proposed method was compared with those of SPA, OPWC, randomization test, competitive adaptive reweighted sampling, and Monte Carlo uninformative variable elimination by using NIR datasets for pharmaceutical tablets, corn, and soil. The results show that the proposed method can select informative variable bands with a cooperative effect and improves the model for quantitative analysis.

Từ khóa


Tài liệu tham khảo

10.1016/j.trac.2009.07.007

10.1016/j.trac.2011.11.007

10.1002/cem.1360

10.1016/j.aca.2010.03.048

10.1021/ac00193a006

10.1002/cem.2812

10.1016/0165-9936(91)85132-B

10.1002/cem.1339

10.1021/ci049610z

10.1002/cem.1002

10.1016/j.aca.2011.04.061

10.1021/ci034292

10.1016/j.talanta.2009.10.009

10.1021/ac960321m

10.1016/j.chemolab.2007.10.001

10.1016/j.aca.2008.02.032

10.1016/j.chemolab.2012.01.002

10.1016/j.aca.2009.06.046

10.1016/j.chemolab.2009.04.006

10.1016/j.chemolab.2012.03.003

10.1016/j.chemolab.2013.12.002

10.1016/S0169-7439(01)00119-8

10.1590/S0103-50532007000800021

10.1016/j.chemolab.2016.05.022

10.2116/analsci.28.545

10.1366/0003702001949500

10.1021/ac011177u

10.1002/cem.893

10.1366/13-07088

10.1016/j.chemolab.2015.04.015

10.1039/C6AY01840H

10.1016/j.jpba.2008.07.021

10.1080/00401706.1969.10490666

10.1016/j.soilbio.2007.01.022

10.1016/0169-7439(94)85050-X