Combination Therapy with Nanomicellar-Curcumin and Temozolomide for In Vitro Therapy of Glioblastoma Multiforme via Wnt Signaling Pathways

Springer Science and Business Media LLC - Tập 70 Số 10 - Trang 1471-1483 - 2020
Ali Bagherian1, Rajab Mardani2, Bostan Roudi1, Mohsen Taghizadeh3, Hamid Reza Banfshe4, Amir Ghaderi5, Amirhossein Davoodvandi6, Samane Shamollaghamsari6, Michael R. Hamblin7, Hamed Mirzaei3
1Department of Biology, Faculty of Science, Islamic Azad University, Damghan Branch, Damghan, Iran
2Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
3Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
4Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
5Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
6Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
7Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1/A):363–398

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23(1):143–150. https://doi.org/10.1093/carcin/23.1.143

Arcella A, Biagioni F, Antonietta Oliva M, Bucci D, Frati A, Esposito V, Cantore G, Giangaspero F, Fornai F (2013) Rapamycin inhibits the growth of glioblastoma. Brain Res 1495:37–51. https://doi.org/10.1016/j.brainres.2012.11.044

Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308. https://doi.org/10.1126/science.281.5381.1305

Bae JH, Park JW, Kwon TK (2003) Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem Biophys Res Commun 303(4):1073–1079. https://doi.org/10.1016/s0006-291x(03)00479-0

Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ (2005) Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280(8):6301–6308

Bose S, Panda AK, Mukherjee S, Sa G (2015) Curcumin and tumor immune-editing: resurrecting the immune system. Cell Div 10:6. https://doi.org/10.1186/s13008-015-0012-z

Chen CC, Taniguchi T, D'Andrea A (2007) The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents. J Mol Med (Berl) 85(5):497–509. https://doi.org/10.1007/s00109-006-0153-2

Chuang S-E, Yeh P-Y, Lu Y-S, Lai G-M, Liao C-M, Gao M, Cheng A-L (2002) Basal levels and patterns of anticancer drug-induced activation of nuclear factor-κB (NF-κB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 63(9):1709–1716

Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144(5):891–901. https://doi.org/10.1083/jcb.144.5.891

Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499. https://doi.org/10.1158/1078-0432.ccr-08-0024

Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M (2005) Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223(2):181–190. https://doi.org/10.1016/j.canlet.2004.09.041

Earnshaw WC (1999) Apoptosis. A cellular poison cupboard. Nature 397(6718):387–389. https://doi.org/10.1038/17015

Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O et al (2019) Global, regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol 5:1749. https://doi.org/10.1001/jamaoncol.2019.2996

Fu H, Wang C, Yang D, Wei Z, Xu J, Hu Z, Zhang Y, Wang W, Yan R, Cai Q (2018) Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting. PI3K and P53 signaling 233(6):4634–4642. https://doi.org/10.1002/jcp.26190

Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312. https://doi.org/10.1126/science.281.5381.1309

Hesari A, Rezaei M, Rezaei M, Dashtiahangar M, Fathi M, Rad JG et al (2019) Effect of curcumin on glioblastoma cells. 234(7):10281–10288. https://doi.org/10.1002/jcp.27933

Howe LR, Watanabe O, Leonard J, Brown AM (2003) Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res 63(8):1906–1913

Jaattela M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23(16):2746–2756. https://doi.org/10.1038/sj.onc.1207513

Kahlert UD, Maciaczyk D, Doostkam S, Orr BA, Simons B, Bogiel T, Reithmeier T, Prinz M, Schubert J, Niedermann G, Brabletz T, Eberhart CG, Nikkhah G, Maciaczyk J (2012) Activation of canonical WNT/beta-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett 325(1):42–53. https://doi.org/10.1016/j.canlet.2012.05.024

Karmakar S, Banik NL, Patel SJ, Ray SK (2006) Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 407(1):53–58. https://doi.org/10.1016/j.neulet.2006.08.013

Kimmelman AC, White E (2017) Autophagy and tumor metabolism. Cell Metab 25(5):1037–1043. https://doi.org/10.1016/j.cmet.2017.04.004

Kriel J, Muller-Nedebock K (2018) Coordinated autophagy modulation overcomes glioblastoma chemoresistance through disruption of mitochondrial bioenergetics. 8(1):10348. https://doi.org/10.1038/s41598-018-28590-9

Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A et al (2003) Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99(3):467–473. https://doi.org/10.3171/jns.2003.99.3.0467

Lee Y, Lee JK, Ahn SH, Lee J, Nam DH (2016) WNT signaling in glioblastoma and therapeutic opportunities. Lab Investig 96(2):137–150. https://doi.org/10.1038/labinvest.2015.140

Lee JE, Yoon SS, Moon EY (2019) Curcumin-induced autophagy augments its antitumor effect against A172 human glioblastoma cells. Biomol Ther (Seoul) 27(5):484–491. https://doi.org/10.4062/biomolther.2019.107

Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Kurzrock R (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101(10):2351–2362. https://doi.org/10.1002/cncr.20605

Li W, Zhou Y, Yang J, Li H, Zhang H, Zheng P (2017) Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol Rep 37(6):3459–3466. https://doi.org/10.3892/or.2017.5637

Mrugala MM, Chamberlain MC (2008) Mechanisms of disease: temozolomide and glioblastoma--look to the future. Nat Clin Pract Oncol 5(8):476–486. https://doi.org/10.1038/ncponc1155

Nager M, Sallan MC, Visa A, Pushparaj C, Santacana M, Macia A et al (2018) Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. 14(4):619–636. https://doi.org/10.1080/15548627.2017.1423439

Perry JR, Belanger K, Mason WP, Fulton D, Kavan P, Easaw J et al (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 28(12):2051–2057. https://doi.org/10.1200/jco.2009.26.5520

Qiang Z, Jun-Jie L, Hai W, Hong L, Bing-Xi L, Lei C et al (2018) TPD52L2 impacts proliferation, invasiveness and apoptosis of glioblastoma cells via modulation of wnt/beta-catenin/snail signaling. Carcinogenesis 39(2):214–224. https://doi.org/10.1093/carcin/bgx125

Ramachandran C, Nair SM, Escalon E, Melnick SJ (2012) Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force in brain tumor cell lines. J Complement Integr Med 9:20. https://doi.org/10.1515/1553-3840.1614

Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M, Piao S, Troxel AB, Evans TL, DeMichele AM, Nathanson KL, O’Dwyer PJ, Kaiser J, Pontiggia L, Davis LE, Amaravadi RK (2014) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10(8):1369–1379. https://doi.org/10.4161/auto.29118

Sarrio D, Franklin CK, Mackay A, Reis-Filho JS, Isacke CM (2012) Epithelial and mesenchymal subpopulations within normal basal breast cell lines exhibit distinct stem cell/progenitor properties. Stem Cells 30(2):292–303. https://doi.org/10.1002/stem.791

Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940. https://doi.org/10.1016/j.cell.2011.04.029

Shabaninejad Z, Pourhanifeh MH, Movahedpour A, Mottaghi R, Nickdasti A, Mortezapour E, Shafiee A, Hajighadimi S, Moradizarmehri S, Sadeghian M, Mousavi SM, Mirzaei H (2020) Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 188:112040. https://doi.org/10.1016/j.ejmech.2020.112040

Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, Lotfi M, Ghorbani A, Sadeghnia HR (2020) Wnt/beta-catenin and PI3K/Akt/mtor signaling pathways in glioblastoma: two main targets for drug design: a review. Curr Pharm Des 26:1729–1741. https://doi.org/10.2174/1381612826666200131100630

Shi J, Wang Y, Jia Z, Gao Y, Zhao C, Yao Y (2017) Curcumin inhibits bladder cancer progression via regulation of beta-catenin expression. Tumour Biol 39(7):1010428317702548. https://doi.org/10.1177/1010428317702548

Shishodia S, Chaturvedi MM, Aggarwal BB (2007) Role of curcumin in cancer therapy. Curr Probl Cancer 31(4):243–305

Smit MA, Peeper DS (2011) Zeb1 is required for TrkB-induced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene 30(35):3735–3744. https://doi.org/10.1038/onc.2011.96

Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273(42):27084–27090. https://doi.org/10.1074/jbc.273.42.27084

Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10(3):511–545. https://doi.org/10.1089/ars.2007.1769

Tan Z, Song L, Wu W, Zhou Y, Zhu J, Wu G, et al. (2018) TRIM14 promotes chemoresistance in gliomas by activating Wnt/beta-catenin signaling via stabilizing Dvl2. Oncogene. 37:5403–15

Tomar VS, Patil V, Somasundaram K (2019) Temozolomide induces activation of Wnt/beta-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. https://doi.org/10.1007/s10565-019-09502-7

Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS. (2011) Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med. 17:103–12

Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW, Kwon TK (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24(7):1199–1208. https://doi.org/10.1093/carcin/bgg082

Xue Y, Li L, Zhang D, Wu K, Chen Y, Zeng J, Wang X, He D (2011) Twisted epithelial-to-mesenchymal transition promotes progression of surviving bladder cancer T24 cells with hTERT-dysfunction. PLoS One 6(11):e27748. https://doi.org/10.1371/journal.pone.0027748

Yang HW, Menon LG, Black PM, Carroll RS, Johnson MD (2010) SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer 10:301. https://doi.org/10.1186/1471-2407-10-301

Yen HY, Tsao CW, Lin YW, Kuo CC, Tsao CH, Liu CY (2019) Regulation of carcinogenesis and modulation through Wnt/beta-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep 9(1):17267. https://doi.org/10.1038/s41598-019-53509-3

Yin H, Zhou Y, Wen C, Zhou C, Zhang W, Hu X et al (2014) Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling. Oncol Rep 32(4):1610–1616. https://doi.org/10.3892/or.2014.3342

Yue X, Lan F, Yang W, Yang Y, Han L, Zhang A, Liu J, Zeng H, Jiang T, Pu P, Kang C (2010) Interruption of beta-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 1366:27–37. https://doi.org/10.1016/j.brainres.2010.10.032

Zanotto-Filho A, Braganhol E, Klafke K, Figueiro F, Terra SR, Paludo FJ et al (2015) Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett 358(2):220–231. https://doi.org/10.1016/j.canlet.2014.12.044

Zhang Q, Zhong Y, Yan LN, Sun X, Gong T, Zhang ZR (2011) Synthesis and preliminary evaluation of curcumin analogues as cytotoxic agents. Bioorg Med Chem Lett 21(3):1010–1014. https://doi.org/10.1016/j.bmcl.2010.12.020

Zhang J, Wang J, Xu J, Lu Y, Jiang J, Wang L et al (2016) Curcumin targets the TFEB-lysosome pathway for induction of autophagy. Oncotarget 7(46):75659–75671. https://doi.org/10.18632/oncotarget.12318

Zou Y, Wang Q, Li B, Xie B, Wang W (2014) Temozolomide induces autophagy via ATMAMPKULK1 pathways in glioma. Mol Med Rep 10(1):411–416. https://doi.org/10.3892/mmr.2014.2151