Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đồng Bộ Hoá Tổ Hợp Dự Kiến Trong Hệ Hỗn Loạn Cấp Phân Hữu với Sự Cản Trở và Bất Định
Tóm tắt
Trong tài liệu này, chúng tôi nghiên cứu đồng bộ hóa tổ hợp dự kiến (CPS). Trong CPS, chúng tôi nghiên cứu đồng bộ hóa tổ hợp dự kiến ma trận (MPCS) và đồng bộ hóa tổ hợp dự kiến ma trận ngược (IMPCS) giữa các hệ thống hỗn loạn phức tạp cấp phân không giống nhau khi chịu tác động của độ bất định và sự nhiễu từ bên ngoài. Đồng bộ hóa dự kiến ma trận (MPS) và đồng bộ hóa dự kiến ma trận ngược được đạt được khi hệ số tỷ lệ là một ma trận hằng, điều này đảm bảo độ an toàn cao trong truyền thông an toàn và mã hóa hình ảnh. Dựa trên lý thuyết ổn định Lyapunov và kỹ thuật điều khiển chủ động thích hợp, đồng bộ hóa MPCS và IMPCS giữa hai hệ thống chủ và một hệ thống nô lệ đã được thực hiện. Dựa trên đồng bộ hóa MPCS, chúng tôi trình bày một sơ đồ truyền thông an toàn, trong đó các tín hiệu tin nhắn được truyền qua phương pháp che giấu tín hiệu hỗn loạn. Cuối cùng, các mô phỏng số đã được cung cấp, cho thấy rằng kết quả lý thuyết của chúng tôi hoàn toàn nhất quán với kết quả đồ họa.
Từ khóa
#đồng bộ hóa tổ hợp dự kiến #đồng bộ hóa ma trận #hệ thống hỗn loạn cấp phân #bảo mật truyền thông #tín hiệu hỗn loạnTài liệu tham khảo
Filali, R.L., Benrejeb, M., Borne, P.: On observer-based secure communication design using discrete-time hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1424–1432 (2014)
Sheikhan, M., Shahnazi, R., Garoucy, S.: Hyperchaos synchronization using PSO-optimized RBF-based controllers to improve security of communication systems. Neural Comput. Appl. 22(5), 835–846 (2013)
Juárez, F.: Applying the theory of chaos and a complex model of health to establish relations among financial indicators. Procedia Comput. Sci. 3, 982–986 (2011)
Sahoo, B., Poria, S.: The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fract. 58, 52–64 (2014)
Bozóki, Z.: Chaos theory and power spectrum analysis in computerized cardiotocography. Eur. J. Obstet. Gynecol. Reprod. Biol. 71(2), 163–168 (1997)
Ma, J., Mi, L., Zhou, P., Ying, X., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)
Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)
Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)
Bhalekar, S.: Synchronization of non-identical fractional order hyperchaotic systems using active control. World J. Model. Simul. 10(1), 60–68 (2014)
Khan, A., Bhat, M.A.: Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system. Int. J. Dyn. Control 5(4), 1211–1221 (2017)
Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J.: Sliding mode control technique for multi-switching synchronization of chaotic systems. In: 2017 9th International Conference on Modelling, Identification and Control (ICMIC), pp. 880–885. IEEE (2017)
Khan, A., Bhat, M.A.: Analysis and projective synchronization of new 4D hyperchaotic system. J. Uncertain Syst. 11(4), 257–268 (2017)
Shao, S., Chen, M., Yan, X.: Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn. 83(4), 1855–1866 (2016)
Khan, A., Singh, S.: Generalization of combination–combination synchronization of n-dimensional time-delay chaotic system via robust adaptive sliding mode control. Math. Methods Appl. Sci. 41(9), 3356–3369 (2018)
Chen, M., Han, Z.: Controlling and synchronizing chaotic genesio system via nonlinear feedback control. Chaos Solitons Fract. 17(4), 709–716 (2003)
Soukkou, A., Boukabou, A., Goutas, A.: Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems. Int. J. Gen. Syst. 47(7), 679–713 (2018)
Ding, Z., Shen, Y.: Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw. 76, 97–105 (2016)
Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62(4), 875–882 (2010)
Li, G.-H., Zhou, S.-P.: Anti-synchronization in different chaotic systems. Chaos Solitons Fract. 32(2), 516–520 (2007)
Vaidyanathan, S.: Hybrid synchronization of the generalized Lotka–Volterra three-species biological systems via adaptive control. Int. J. PharmTech Res. 9(1), 179–192 (2016)
Khan, A., Tyagi, A.: Fractional order disturbance observer based adaptive sliding mode hybrid projective synchronization of fractional order Newton–Leipnik chaotic system. Int. J. Dyn. Control 6(3), 1136–1149 (2018)
Agrawal, S.K., Das, S.: Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method. J. Process Control 24(5), 517–530 (2014)
Prajapati, N., Khan, A., Khattar, D.: On multi switching compound synchronization of non identical chaotic systems. Chin. J. Phys. 56(4), 1656–1666 (2018)
Singh, A.K., Yadav, V.K., Das, S.: Dual combination synchronization of the fractional order complex chaotic systems. J. Comput. Nonlinear Dyn. 12(1), 011017 (2017)
Zhang, B., Deng, F.: Double-compound synchronization of six memristor-based Lorenz systems. Nonlinear Dyn. 77(4), 1519–1530 (2014)
Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042 (1999)
Liu, S., Zhang, F.: Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn. 76(2), 1087–1097 (2014)
Yan, W., Ding, Q.: A new matrix projective synchronization and its application in secure communication. IEEE Access 7, 112977–112984 (2019)
Ouannas, A., Abu-Saris, R.: On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems. J. Chaos 2016, 4912520 (2016)
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S.: On new fractional inverse matrix projective synchronization schemes. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds.) Fractional Order Control and Synchronization of Chaotic Systems, pp. 497–524. Springer, Cham (2017)
He, J., Chen, F., Lei, T.: Fractional matrix and inverse matrix projective synchronization methods for synchronizing the disturbed fractional-order hyperchaotic system. Math. Methods Appl. Sci. 41(16), 6907–6920 (2018)
He, J., Chen, F.: Dynamical analysis of a new fractional-order Rabinovich system and its fractional matrix projective synchronization. Chin. J. Phys. 56(5), 2627–2637 (2018)
He, J., Chen, F., Bi, Q.: Quasi-matrix and quasi-inverse-matrix projective synchronization for delayed and disturbed fractional order neural network. Complexity 2019, 4823709 (2019)
Xiangyong Chen, J.H., Park, J.C., Qiu, J.: Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl. Math. Comput. 308, 161–173 (2017)
Vargas, J.A.R., Grzeidak, E., Gularte, K.H.M., Alfaro, S.C.A.: An adaptive scheme for chaotic synchronization in the presence of uncertain parameter and disturbances. Neurocomputing 174, 1038–1048 (2016)
Aghababa, M.P., Akbarif, M.E.: A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances. Appl. Math. Comput. 218(9), 5757–5768 (2012)
Aghababa, M.P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities. Appl. Math. Model. 36(4), 1639–1652 (2012)
Podlubny, I.: Fractional derivatives and integrals. Fract. Differ. Equ. 198, 41–117 (1998)
Matignon, D.: Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, vol. 2, pp. 963–968. WSEAS Press, Lille (1996)
Yadav, V.K., Srivastava, M., Das, S.: Dual combination synchronization scheme for nonidentical different dimensional fractional order systems using scaling matrices. Mathematical Techniques of Fractional Order Systems, pp. 347–374. Elsevier, Amsterdam (2018)
Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyperchaotic complex Lorenz system. Math. Comput. Simul. 80(12), 2286–2296 (2010)
Liu, X., Hong, L., Yang, L.: Fractional-order complex T system: bifurcations, chaos control, and synchronization. Nonlinear Dyn. 75(3), 589–602 (2014)
Singh, A.K., Yadav, V.K., Das, S.: Synchronization between fractional order complex chaotic systems. Int. J. Dyn. Control 5(3), 756–770 (2017)
Xiang-Jun, W., Wang, H., Hong-Tao, L.: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal. Real World Appl. 12(2), 1288–1299 (2011)
He, J., Cai, J.: Finite-time combination–combination synchronization of hyperchaotic systems and its application in secure communication. Phys. Sci. Int. J. 4(10), 1326 (2014)
Khan, A., Nigar, U.: Adaptive hybrid complex projective combination–combination synchronization in non-identical hyperchaotic complex systems. Int. J. Dyn. Control 7, 1404–1418 (2019)