Colorectal cancer organoid models uncover oxaliplatin-resistant mechanisms at single cell resolution
Tóm tắt
Oxaliplatin-based chemotherapy is a standard treatment for advanced colorectal cancer (CRC) patients. However, chemoresistance-induced resistance is an essential cause for mortality. Therefore, it is necessary to study the mechanism of drug resistance in CRC. Here, we established two strains of patient-derived organoids (PDOs) selected from oxaliplatin-resistant and treatment-naïve CRC patients. To dissect the drug-resistant mechanisms, these CRC-PDOs were subjected to single-cell RNA sequencing (scRNA-Seq). We found that the drug sensitivity test outcome from these organoids subjected to oxaliplatin and 5-FU exposure was consistent with the clinic readout. CRC-PDOs well recapitulated the morphology and histology of their parental biopsies based on HE and IHC staining of pathological biomarkers. The scRNA-Seq data filtered drug-resistant cell populations and related signaling pathways (e.g. oxidative phosphorylation and ATP metabolic process). The data also revealed several putative drug resistant-driven genes (STMN1, VEGFA and NDRG1) and transcription factors (E2F1, BRCA1, MYBL2, CDX2 and CDX1). We generated an oxaliplatin-resistant CRC organoid model that was employed to provide potential therapeutic targets for treating CRC patients exhibiting oxaliplatin-resistance.
Tài liệu tham khảo
M. Fidelle, S. Yonekura, M. Picard, A. Cogdill, A. Hollebecque, M.P. Roberti, L. Zitvogel, Front. Immunol. 11, 600886 (2020). https://doi.org/10.3389/fimmu.2020.600886
J.J. Marin, F. Sanchez de Medina, B. Castano, L. Bujanda, M.R. Romero, O. Martinez-Augustin, R.D. Moral-Avila, O. Briz, Drug Metab. Rev. 44, 148–172 (2012). https://doi.org/10.3109/03602532.2011.638303
K. Van der Jeught, H.C. Xu, Y.J. Li, X.B. Lu, G. Ji, World J. Gastroenterol. 24, 3834–3848 (2018). https://doi.org/10.3748/wjg.v24.i34.3834
S. Vodenkova, T. Buchler, K. Cervena, V. Veskrnova, P. Vodicka, V. Vymetalkova, Pharmacol. Ther. 206, 107447 (2020). https://doi.org/10.1016/j.pharmthera.2019.107447
D. Tuveson, H. Clevers, Science 364, 952–955 (2019). https://doi.org/10.1126/science.aaw6985
S.N. Ooft, F. Weeber, K.K. Dijkstra, C.M. McLean, S. Kaing, E. van Werkhoven, L. Schipper, L. Hoes, D.J. Vis, J. van de Haar, W. Prevoo, P. Snaebjornsson, D. van der Velden, M. Klein, M. Chalabi, H. Boot, M. van Leerdam, H.J. Bloemendal, L.V. Beerepoot, L. Wessels, E. Cuppen, H. Clevers, E.E. Voest, Sci. Transl Med. 11, 513 (2019). https://doi.org/10.1126/scitranslmed.aay2574
B. Artegiani, H. Clevers, Hum. Mol. Genet. 27, R99-R107 (2018). https://doi.org/10.1093/hmg/ddy187
M. Fujii, M. Shimokawa, S. Date, A. Takano, M. Matano, K. Nanki, Y. Ohta, K. Toshimitsu, Y. Nakazato, K. Kawasaki, T. Uraoka, T. Watanabe, T. Kanai, T. Sato, Cell. Stem Cell. 18, 827–838 (2016). https://doi.org/10.1016/j.stem.2016.04.003
D.B. Ji, A.W. Wu, Chin. Med. J. (Engl) 133, 1971–1977 (2020). https://doi.org/10.1097/CM9.0000000000000882
K. Kretzschmar, J. Mol. Med. (Berl) 99, 501–515 (2021). https://doi.org/10.1007/s00109-020-01990-z
R. Chen, G.I. Mias, J. Li-Pook-Than, L. Jiang, H.Y. Lam, R. Chen, E. Miriami, K.J. Karczewski, M. Hariharan, F.E. Dewey, Y. Cheng, M.J. Clark, H. Im, L. Habegger, S. Balasubramanian, M. O’Huallachain, J.T. Dudley, S. Hillenmeyer, R. Haraksingh, D. Sharon, G. Euskirchen, P. Lacroute, K. Bettinger, A.P. Boyle, M. Kasowski, F. Grubert, S. Seki, M. Garcia, M. Whirl-Carrillo, M. Gallardo, M.A. Blasco, P.L. Greenberg, P. Snyder, T.E. Klein, R.B. Altman, A.J. Butte, E.A. Ashley, M. Gerstein, K.C. Nadeau, H. Tang, M. Snyder, Cell 148, 1293–1307 (2012). https://doi.org/10.1016/j.cell.2012.02.009
C. Gao, M. Zhang, L. Chen, Curr. Genomics 21, 602–609 (2020). https://doi.org/10.2174/1389202921999200625220812
M. Huch, J.A. Knoblich, M.P. Lutolf, A. Martinez-Arias, Development 144, 938–941 (2017). https://doi.org/10.1242/dev.150201
O. Ginsburg, P. Ashton-Prolla, A. Cantor, D. Mariosa, P. Brennan, Nat. Rev. Clin. Oncol. 18, 116–128 (2021). https://doi.org/10.1038/s41571-020-0428-5
T. Sato, D.E. Stange, M. Ferrante, R.G. Vries, J.H. Van Es, S. Van den Brink, W.J. Van Houdt, A. Pronk, J. Van Gorp, P.D. Siersema, H. Clevers, Gastroenterology 141, 1762–1772 (2011). https://doi.org/10.1053/j.gastro.2011.07.050
T. Sato, H. Clevers, Science 340, 1190–1194 (2013). https://doi.org/10.1126/science.1234852
E.G.H. de Castro, L. Jesuino Nogueira, P. Bencke Grudzinski, P.V. da C. Ghignatti, T.N. Guecheva, N. Motta Leguisamo, J. Saffi, BMC Cancer 21, 448 (2021). https://doi.org/10.1186/s12885-021-08188-7
N. Devaud, S. Gallinger, Fam Cancer 12, 301–306 (2013). https://doi.org/10.1007/s10689-013-9633-z
M.A. Lancaster, J.A. Knoblich, Science 345, 1247125 (2014). https://doi.org/10.1126/science.1247125
T.R.M. Lannagan, Y.K. Lee, T. Wang, J. Roper, M.L. Bettington, L. Fennell, L. Vrbanac, L. Jonavicius, R. Somashekar, K. Gieniec, M. Yang, J.Q. Ng, N. Suzuki, M. Ichinose, J.A. Wright, H. Kobayashi, T.L. Putoczki, Y. Hayakawa, S.J. Leedham, H.E. Abud, O.H. Yilmaz, J. Marker, S. Klebe, P. Wirapati, S. Mukherjee, S. Tejpar, B.A. Leggett, V.L.J. Whitehall, D.L. Worthley, S.L. Woods, Gut 68, 684–692 (2019). https://doi.org/10.1136/gutjnl-2017-315920
H. Aboulkheyr Es, L. Montazeri, A.R. Aref, M. Vosough, H. Baharvand, Trends Biotechnol. 36, 358–371 (2018). https://doi.org/10.1016/j.tibtech.2017.12.005
M. Bleijs, M. van de Wetering, H. Clevers, J. Drost, EMBO J. 38, e101654 (2019). https://doi.org/10.15252/embj.2019101654
S. Date, T. Sato, Annu. Rev. Cell. Dev. Biol. 31, 269–289 (2015). https://doi.org/10.1146/annurev-cellbio-100814-125218
A. Fatehullah, S.H. Tan, N. Barker, Nat. Cell. Biol. 18, 246–254 (2016). https://doi.org/10.1038/ncb3312
A. Ootani, X. Li, E. Sangiorgi, Q.T. Ho, H. Ueno, S. Toda, H. Sugihara, K. Fujimoto, I.L. Weissman, M.R. Capecchi, C.J. Kuo, Nat. Med. 15, 701–706 (2009). https://doi.org/10.1038/nm.1951
M.M. Mahe, E. Aihara, M.A. Schumacher, Y. Zavros, M.H. Montrose, M.A. Helmrath, T. Sato, N.F. Shroyer, Curr. Protoc. Mouse Biol. 3, 217–240 (2013). https://doi.org/10.1002/9780470942390.mo130179
A.T. Xu, J.L. Tong, Z.H. Ran, J. Dig. Dis. 17, 3–10 (2016). https://doi.org/10.1111/1751-2980.12305
D.R. Cochrane, K.R. Campbell, K. Greening, G.C. Ho, J. Hopkins, M. Bui, J.M. Douglas, V. Sharlandjieva, A.D. Munzur, D. Lai, M. DeGrood, E.W. Gibbard, S. Leung, N. Boyd, A.S. Cheng, C. Chow, J.L. Lim, D.A. Farnell, S. Kommoss, F. Kommoss, A. Roth, L. Hoang, J.N. McAlpine, S.P. Shah, D.G. Huntsman, J. Pathol. 252, 201–214 (2020). https://doi.org/10.1002/path.5511
D.T. Paik, L. Tian, I.M. Williams, S. Rhee, H. Zhang, C. Liu, R. Mishra, S.M. Wu, K. Red-Horse, J.C. Wu, Circulation 142, 1848–1862 (2020). https://doi.org/10.1161/CIRCULATIONAHA.119.041433
M.R. Junttila, F.J. de Sauvage, Nature 501, 346–354 (2013). https://doi.org/10.1038/nature12626
P. Gotwals, S. Cameron, D. Cipolletta, V. Cremasco, A. Crystal, B. Hewes, B. Mueller, S. Quaratino, C. Sabatos-Peyton, L. Petruzzelli, J.A. Engelman, G. Dranoff, Nat. Rev. Cancer 17, 286–301 (2017). https://doi.org/10.1038/nrc.2017.17
G. Qi, C. Zhang, H. Ma, Y. Li, J. Peng, J. Chen, B. Kong, Am. J. Cancer Res. 11, 389–415 (2021) PMID: 33575078, PMCID: PMC7868764
R. Bayley, C. Ward, P. Garcia, Biochim. Biophys. Acta Rev. Cancer 1874, 188407 (2020). https://doi.org/10.1016/j.bbcan.2020.188407