Collection of unconventional transport phenomena: natural obstacle or vibrant guiding principle for the design of molecular junctions?
Tóm tắt
The real atomic scale details of molecular junctions would be of much complexity and can yield a plethora of “counterintuitive” results. Here, we provide an overview of four unconventional intentional or unintentional transport phenomena in molecular junctions, in particular, unconventional tunneling length-dependent transport behavior, deviation from Kirchhoff’s superposition law, dual roles of imperfect engineering, and masked quantum interference. These abnormal phenomena are not engaged in a dead end. On the contrary, it offers plenty of research opportunities in molecular electronics.
Tài liệu tham khảo
P. Jelínek, M. Švec, P. Pou, R. Perez, V. Cháb, Tip-induced reduction of the resonant tunneling current on semiconductor surfaces. Phys Rev Lett 101, 176101 (2008) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.176101
K.P. Dou, W. Fan, T.A. Niehaus, T. Frauenheim, C.L. Wang, X.H. Zhang, R.Q. Zhang, Electron transport suppression from tip-π state interaction on Si(100)-2×1 surfaces. J Chem Theory Comput 7, 707–712 (2011) https://pubs.acs.org/doi/10.1021/ct1004998
I. Franco, G.C. Solomon, G.C. Schatz, M.A. Ratner, Tunneling currents that increase with molecular elongation. J Am Chem Soc 133, 15714–15720 (2011) https://pubs.acs.org/doi/10.1021/ja205908q
D.Q. Andrews, G.C. Solomon, R.P. Van Duyne, M.A. Ratner, Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J Am Chem Soc 130, 17309–17319 (2008) https://pubs.acs.org/doi/10.1021/ja804399q
S. Li, C.K. Gan, Y. Son, Y.P. Feng, S.Y. Quek, Anomalous length-independent frontier resonant transmission peaks in armchair graphene nanoribbon molecular wires. Carbon 76, 285–291 (2014) https://www.sciencedirect.com/science/article/pii/S0008622314004114
N. Algethami, H. Sadeghi, S. Sangtarash, C.J. Lambert, The conductance of porphyrin-based molecular nanowires increases with length. Nano Lett 18, 4482–4486 (2018) https://pubs.acs.org/doi/10.1021/acs.nanolett.8b01621
Y. He, N. Cheng, J. Zhao, First-principle study on the conductance of benzene-based molecules with various bonding characteristics. Comput Theor Chem 1154, 1–10 (2019) https://linkinghub.elsevier.com/retrieve/pii/S2210271X19300660
M.H. Garner, W. Bro-Jørgensen, P.D. Pedersen, G.C. Solomon, Reverse bond-length alternation in cumulenes: candidates for increasing electronic transmission with length. J. Phys. Chem. C 122, 26777–26789 (2018) https://pubs.acs.org/doi/10.1021/acs.jpcc.8b05661
Y. Zang, S. Ray, E. Fung, A. Borges, M.H. Garner, M.L. Steigerwald, G.C. Solomon, S. Patil, L. Venkataraman, Resonant transport in single diketopyrrolopyrrole junctions. J Am Chem Soc 140, 13167–13170 (2018) https://pubs.acs.org/doi/10.1021/jacs.8b06964
H. Sadeghi, S. Sangtarash, C. Lambert, Robust molecular anchoring to graphene electrodes. Nano Lett 17, 4611–4618 (2017) https://pubs.acs.org/doi/10.1021/acs.nanolett.7b01001
T. Stuyver, T. Zeng, Y. Tsuji, S. Fias, P. Geerlings, F.D. Proft, Captodative substitution: a strategy for enhancing the conductivity of molecular electronic devices. J Phys Chem C 122, 3194–3200 (2018)
D.F.S. Ferreira, M. Moura-Moreira, S.M. Corrêa, C.A.B. da Silva Jr, J. Del Nero, Electronic transport in 1D system with coupling atomic-size nickel electrodes and carbon wires. MSEB 262, 114681 (2020) https://linkinghub.elsevier.com/retrieve/pii/S0921510720301884
J. Valdiviezo, P. Rocha, A. Polakovsky, J.L. Palma, Nonexponential length dependence of molecular conductance in acene-based molecular wires. ACS Sens 6, 477–484 (2021) https://pubs.acs.org/doi/10.1021/acssensors.0c02049
Y. Luo, K. Barthelmes, M. Wächtler, A. Winter, U.S. Schubert, B. Dietzek, Increased charge separation rates with increasing donor−acceptor distance in molecular triads: the effect of solvent polarity. J Phys Chem C 121, 9220–9229 (2017) https://pubs.acs.org/doi/10.1021/acs.jpcc.7b02513
T. Stuyver, T. Zeng, Y. Tsuji, P. Geerlings, F.D. Proft, Diradical character as a guiding principle for the insightful design of molecular nanowires with an increasing conductance with length. Nano Lett 18, 7298–7304 (2018) https://pubs.acs.org/doi/10.1021/acs.nanolett.8b03503
Y. Tsuji, R. Movassagh, S. Datta, R. Hoffmann, Exponential attenuation of through-bond transmission in a polyene: theory and potential realizations. ACS Nano 9, 11109–11120 (2015) https://pubs.acs.org/doi/10.1021/acsnano.5b04615
S. Gil-Guerrero, N. Ramos-Berdullas, Á.M. Pendás, E. Francisco, M. Mandado, Anti-ohmic single molecule electron transport: is it feasible? Nanoscale Adv 1, 1901 (2019) https://pubs.rsc.org/en/content/articlelanding/2019/NA/C8NA00384J
K. Dou, X. Fu, A.D. Sarkar, R. Zhang, Dual response of graphene-based ultra-small molecular junctions to defect engineering. Nano Res 9, 1480–1488 (2016) https://link.springer.com/article/10.1007/s12274-016-1044-7
L. Li, S. Louie, A.M. Evans, E. Meirzadeh, C. Nuckolls, L. Venkataraman, Topological radical pairs produce ultrahigh conductance in long molecular wires. J Am Chem Soc 145, 2492–2498 (2023) https://pubs.acs.org/doi/10.1021/jacs.2c12059
S. Srivastava, H. Kino, C. Joachim, Contact conductance of a graphene nanoribbon with its graphene nano-electrodes. Nanoscale 8, 9265 (2016) https://pubs.rsc.org/en/content/articlelanding/2016/NR/C6NR00848H
S. Gunasekaran, D. Hernangómez-Pérez, I. Davydenko, S. Marder, F. Evers, L. Venkataraman, Near length-independent conductance in polymethine molecular wires. Nano Lett 18, 6387–6391 (2018) https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02743
K.P. Dou, C.C. Kaun, Conductance superposition rule in carbon nanowire junctions with parallel paths. J Phys Chem C 120, 18939–18944 (2016) https://pubs.acs.org/doi/10.1021/acs.jpcc.6b06399
T. Tada, K. Yoshizawa, Reverse exponential decay of electrical transmission in nanosized graphite sheets. J Phys Chem B 108, 7565–7572 (2004) https://pubs.acs.org/doi/10.1021/jp0310908
Y. Zang, T. Fu, Q. Zou, F. Ng, H. Li et al., Cumulene wires display increasing conductance with increasing length. Nano Lett 20, 8415–8419 (2020) https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03794
Y. Zhang, S. Soni, T.L. Krijger, P. Gordiichuk, X. Qiu, G. Ye, H.T. Jonkman, A. Herrmann, K. Zojer, E. Zojer, R.C. Chiechi, Tunneling probability increases with distance in junctions comprising self-assembled monolayers of oligothiophenes. J Am Chem Soc 140, 15048–15055 (2018) https://pubs.acs.org/doi/10.1021/jacs.8b09793
E. Leary, B. Limburg, A. Alanazy, S. Sangtarash, I. Grace, K. Swada, L.J. Esdaile, M. Noori, M.T. González, G. Rubio-Bollinger, H. Sadeghi, A. Hodgson, N. Agraït, S.J. Higgins, C.J. Lambert, H.L. Anderson, R.J. Nichols, Bias-driven conductance increase with length in porphyrin tapes. J Am Chem Soc 140, 12877–12883 (2018) https://pubs.acs.org/doi/10.1021/jacs.8b06338
W. Xu, E. Leary, S. Sangtarash, M. Jirasek, M.T. González et al., A Peierls transition in long polymethine molecular wires: evolution of molecular geometry and single-molecule conductance. J Am Chem Soc 143, 20472–20481 (2021) https://pubs.acs.org/doi/10.1021/jacs.1c10747
V.M. García-Suárez, C.J. Lambert, Non-trivial length dependence of the conductance and negative differential resistance in atomic molecular wires. Nanotechnology 19, 4552031–4552035 (2008) https://iopscience.iop.org/article/10.1088/0957-4484/19/45/455203
L. Li, J.Z. Low, J. Wilhelm, G. Liao, S. Gunasekaran et al., Highly conducting single-molecule topological insulators based on mono- and di-radical cations. Nat Chem 14, 1061–1067 (2022) https://linkinghub.elsevier.com/retrieve/pii/S2210271X19300660
M. Magoga, C. Joachim, Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59, 16011 (1999) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.59.16011
H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, M.S. Hybertsen, Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat Nanotechnol 7, 663–667 (2012) https://www.nature.com/articles/nnano.2012.147
H. Chen, H. Zheng, C. Hu, K. Cai, Y. Jiao, L. Zhang, F. Jiang, I. Roy, Y. Qiu, D. Shen, Y. Feng, F.M. Alsubaie, H. Guo, W. Hong, J.F. Alsubaie, Giant conductance enhancement of intramolecular circuits through interchannel gating. Matter 2, 378–389 (2020) https://www.sciencedirect.com/science/article/pii/S2590238519304060
P. Li, S. Hou, B. Alharbi, Q. Wu, Y. Chen, L. Zhou, T. Gao, R. Li, L. Yang, X. Chang, G. Dong, X. Liu, S. Decurtins, S. Liu, W. Hong, C.J. Lambert, C. Jia, X. Guo, Quantum interference-controlled conductance enhancement in stacked graphene-like dimers. J Am Chem Soc 144, 15689–15697 (2022) https://pubs.acs.org/doi/10.1021/jacs.2c05909
J. Li, Z. Zhuang, P. Shen, S. Song, B.Z. Tang, Z. Zhao, Achieving multiple quantum-interfered states via through-space and through-bond synergistic effect in foldamer-based single-molecule junctions. J Am Chem Soc 144, 8073–8083 (2022) https://pubs.acs.org/doi/10.1021/jacs.2c00322
Y. Zhou, C. Chen, B. Li, K. Chen, Characteristics of classical Kirchhoff’s superposition law in carbon atomic wires connected in parallel. Carbon 95, 503–510 (2015) https://www.sciencedirect.com/science/article/pii/S0008622315301810
D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9, 1752–1758 (2009) https://pubs.acs.org/doi/10.1021/nl803279t
U. Bangert, W. Pierce, D.M. Kepaptsoglou, Q. Ramasse, R. Zan, M.H. Gass, J.A. Van den Berg, C.B. Boothroyd, J. Amani, H. Hofsäss, Ion implantation of graphene-toward IC compatible technologies. Nano Lett 13, 4902–4907 (2013) https://pubs.acs.org/doi/10.1021/nl402812y
B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett 10, 4975–4980 (2010) https://pubs.acs.org/doi/10.1021/nl103079j
C. Tang, L. Huang, S. Sangtarash, M. Noori, H. Sadeghi, H. Xia, W. Hong, Reversible switching between destructive and constructive quantum interference using atomically precise chemical gating of single-molecule junctions. J Am Chem Soc 143, 9385–9392 (2021) https://pubs.acs.org/doi/10.1021/jacs.1c00928
G.C. Solomon, C. Herrmann, T. Hansen, V. Mujica, M.A. Ratner, Exploring local currents in molecular junctions. Nat Chem 2, 223–228 (2010) https://www.nature.com/articles/nchem.546
A. Borges, J. Xia, S.H. Liu, L. Venkataraman, G.C. Solomon, The role of through-space interactions in modulating constructive and destructive interference effects in benzene. Nano Lett 17, 4436–4442 (2017) https://pubs.acs.org/doi/10.1021/acs.nanolett.7b01592
K.P. Dou, C. Chang, C. Kaun, Gate-tunable Fano resonances in parallel-polyacene-bridged carbon nanotubes. J Phys Chem C 123, 4605–4609 (2019). https://pubs.acs.org/doi/10.1021/acs.jpcc.9b00643
J. Ren, Y. Liu, X. Shi, G. Shan, M. Tang, C. Kaun, K. Dou, Flexoelectricity driven Fano resonance in slotted carbon nanotubes for decoupled multifunctional sensing. Research 2021, 9821905 (2021) https://spj.science.org/doi/10.34133/2021/9821905