Colitis-ulcerosa-assoziierte Karzinogenese
Tóm tắt
Colitis ulcerosa (CU) ist eine chronisch-entzündliche Darmerkrankung, die meist im Rektum beginnt, sich im Verlauf der Erkrankung kontinuierlich auf das gesamte Kolorektum ausdehnen und das terminale Ileum (sog. Backwash-Ileitis) mit einbeziehen kann. Ihre Ursachen sind noch nicht komplett verstanden, als wesentliche Einflussfaktoren werden eine veränderte Immunantwort, ein verändertes intestinales Mikrobiom, genetische Suszeptibilität und Umweltfaktoren diskutiert. Patienten mit CU haben gegenüber der gleichaltrigen Normalbevölkerung ein erhöhtes Risiko, an einem kolorektalen Karzinom (KRK) zu erkranken. Das Risiko steigt mit zunehmender Erkrankungsdauer und -ausdehnung, bei frühem Erkrankungsbeginn, Entwicklung von Kolonstrikturen, intraepithelialen Neoplasien und bei gleichzeitigem Bestehen einer primär sklerosierenden Cholangitis. Im Gegensatz zur sporadischen Adenom-Karzinom-Sequenz verläuft die CU-assoziierte Karzinogenese über eine Entzündung – intraepitheliale Neoplasie – Karzinom – Sequenz, in der genetische Alterationen bereits in der entzündlich veränderten Schleimhaut auftreten. Im folgenden Beitrag werden der aktuelle Wissensstand zur CU-assoziierten Karzinogenese und mögliche Auswirkungen auf Prävention und Therapie zusammengefasst.
Tài liệu tham khảo
André T, Shiu K‑K, Kim TW et al (2020) Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N Engl J Med 383:2207–2218
Aust DE, Baretton GB, Waldman FM et al (1999) Molecular carcinogenesis in ulcerative colitis-associated and sporadic colorectal carcinoma--differences and similarities. Verh Dtsch Ges Pathol 83:130–138
Aust DE, Terdiman JP, Willenbucher RF et al (2002) The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer 94:1421–1427
Authors and Collaborators (2019) Updated S3-guideline ulcerative colitis. German society for digestive and metabolic diseases (DGVS). Z Gastroenterol 57:162–241
Bajpai M, Seril DN, Van Gurp J et al (2019) Effect of long-term mesalamine therapy on cancer-associated gene expression in colonic mucosa of patients with ulcerative colitis. Dig Dis Sci 64:740–750
Beaugerie L, Itzkowitz SH (2015) Cancers complicating inflammatory bowel disease. N Engl J Med 372:1441–1452
Biarc J, Nguyen IS, Pini A et al (2004) Carcinogenic properties of proteins with pro-inflammatory activity from streptococcus infantarius (formerly S.bovis). Carcinogenesis 25:1477–1484
Carrat F, Seksik P, Colombel JF et al (2017) The effects of aminosalicylates or thiopurines on the risk of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther 45:533–541
Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death‑1. Clin Cancer Res 18:6580–6587
Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10
Fan X, Jin Y, Chen G et al (2021) Gut microbiota dysbiosis drives the development of colorectal cancer. Digestion 102:508–515
Fleisher AS, Esteller M, Harpaz N et al (2000) Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res 60:4864–4868
Gao J, Shi LZ, Zhao H et al (2016) Loss of IFN‑γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA‑4 therapy. Cell 167:397–404.e9
Gordillo J, Cabre E, Garcia-Planella E et al (2015) Thiopurine therapy reduces the incidence of colorectal neoplasia in patients with ulcerative colitis. Data from the ENEIDA registry. J Crohns Colitis 9:1063–1070
Hartnett L, Egan LJ (2012) Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 33:723–731
Li W, Zhao T, Wu D et al (2022) Colorectal cancer in ulcerative colitis: mechanisms, surveillance and chemoprevention. Curr Oncol 29:6091–6114
Lizardo DY, Kuang C, Hao S et al (2020) Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: from bench to bedside. Biochim Biophys Acta Rev Cancer 1874:188447
Lu Y, Li X, Liu S et al (2018) Toll-like receptors and inflammatory bowel disease. Front Immunol 9:72
Lucafo M, Curci D, Franzin M et al (2021) Inflammatory bowel disease and risk of colorectal cancer: an overview from pathophysiology to pharmacological prevention. Front Pharmacol 12:772101
Ozawa N, Yokobori T, Osone K et al (2021) PD-L1 upregulation is associated with activation of the DNA double-strand break repair pathway in patients with colitic cancer. Sci Rep 11(1):13077. https://doi.org/10.1038/s41598-021-92530-3
Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Short chain fatty acids (SCFas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277
Pasternak B, Svanstrom H, Schmiegelow K et al (2013) Use of azathioprine and the risk of cancer in inflammatory bowel disease. Am J Epidemiol 177:1296–1305
Potter JD (1999) Colorectal cancer: molecules and populations. J Natl Cancer Inst 91:916–932
Qiu X, Ma J, Wang K et al (2017) Chemopreventive effects of 5‑aminosalicylic acid on inflammatory bowel disease-associated colorectal cancer and dysplasia: a systematic review with meta-analysis. Oncotarget 8:1031–1045
Quandt J, Arnovitz S, Haghi L et al (2021) Wnt-beta-catenin activation epigenetically reprograms T(reg) cells in inflammatory bowel disease and dysplastic progression. Nat Immunol 22:471–484
Raine T, Bonovas S, Burisch J et al (2022) ECCO guidelines on therapeutics in ulcerative colitis: medical treatment. J Crohns Colitis 16:2–17
Rajamaki K, Taira A, Katainen R et al (2021) Genetic and epigenetic characteristics of inflammatory bowel disease-associated colorectal cancer. Gastroenterology 161:592–607
Richard ML, Liguori G, Lamas B et al (2018) Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes 9:131–142
Sheng YH, Giri R, Davies J et al (2021) A nucleotide analog prevents colitis-associated cancer via beta-catenin independently of inflammation and autophagy. Cell Mol Gastroenterol Hepatol 11:33–53
Sorbara MT, Dubin K, Littmann ER et al (2019) Inhibiting antibiotic-resistant enterobacteriaceae by microbiota-mediated intracellular acidification. J Exp Med 216:84–98
Terdiman JP, Steinbuch M, Blumentals WA et al (2007) 5‑Aminosalicylic acid therapy and the risk of colorectal cancer among patients with inflammatory bowel disease. Inflamm Bowel Dis 13:367–371
Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461
Wijnands AM, de Jong ME, Lutgens MWMD et al (2021) Prognostic factors for advanced colorectal neoplasia in inflammatory bowel disease: systematic review and meta-analysis. Gastroenterology 160:1584–1598
Willenbucher RF, Aust DE, Chang CG et al (1999) Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol 154:1825–1830
Yang Y, Gharaibeh RZ, Newsome RC et al (2020) Amending microbiota by targeting intestinal inflammation with TNF blockade attenuates development of colorectal cancer. Nat Cancer 1:723–734
Zhang Y, Weng Y, Gan H et al (2018) Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem Biophys Res Commun 506:907–911