Coincidental Compositional and Orbital Correspondences Among Some Ordinary Chondrites: No Strong Evidence for Meteoroid Streams
Tóm tắt
Previous attempts to assign ordinary chondrites (OC) to meteoroid streams have been unsuccessful because the orbits of the proposed members had different radiants and, in some cases, the meteorites had significantly different cosmic-ray exposure (CRE) ages. Using more conservative criteria, we have identified four pairs of equilibrated OC (L6 Nejo, Salem; L6 Perpeti, Vouillé; L6 Drake Creek, Forsyth; H5 Okabe, Kerilis) wherein each member of the pair could conceivably have been derived from the same immediate precursor body (IPB). The members of each pair are of the same chondrite group and petrologic type; they have similar CRE ages and fell within 1 calendar day of each other (in different years). Because there is a moderate range in oxidation state (represented by mean olivine Fa) among equilibrated OC in each group, similarities in this intrinsic geochemical property between the members of two of the proposed pairs offer some support for the hypothesis that these rocks were derived from the same IPB. If the pairs are genuine, their precursor bodies were probably meter-size near-Earth asteroids (NEAs) with aphelia within or beyond the Main Asteroid Belt. Fragmentation of such NEAs is most likely to have occurred near aphelia; in principle, the ejecta could have spread somewhat along the NEAs’ orbits and collided with Earth on approximately the same calendar date but in different years. However, literature data show that, although ∼670 meteorites with masses ≥10 kg reach the Earth’s surface each year, only five or six falls (typically in this mass range) are observed and recovered. This suggests that the chances of recovering more than one meteorite from a disrupted meter-size body in Earth-crossing orbit are small. It thus seems likely that the similar properties of the proposed OC pairs are due to coincidence.
Tài liệu tham khảo
E. Anders, Two meteorites of unusually short cosmic-ray exposure age. Science 138, 431–433 (1962)
E. Anders, Most stony meteorites come from the asteroid belt, in Asteroids: An Exploration Assessment, vol. NASA CP 2053, ed. by D. Morrison, W. C. Wells. (U. S. Government Printing Office, 1978)
P.H. Benoit, D.W.G. Sears, The breakup of a meteorite parent body and the delivery of meteorites to Earth. Science 255, 1685–1687 (1992)
P.H. Benoit, D.W.G. Sears, Breakup and structure of an H-chondrite parent body: The H-chondrite flux over the last million years. Icarus 101, 188–200 (1993)
P.H. Benoit, D.W.G. Sears, The orbits of meteorites from natural thermoluminescence. Icarus 125, 281–287 (1997)
N. Bhandari, D. Lal, R.S. Rajan, J.R. Arnold, K. Marti, C.B. Moore, Atmospheric ablation in meteorites: a study based on cosmic ray tracks and neon isotopes. Nucl. Tracks 4, 213–262 (1980)
S.K. Bhattacharya, M. Imamura, N. Sinha, N. Bhandari, Depth and size dependence of 53Mn activity in chondrites. Earth Planet. Sci. Lett. 51, 45–57 (1980)
A. Bischoff, J. Zipfel, Mineralogy of the Neuschwanstein (EL6) chondrite—first results. Lunar Planet. Sci. 34, abstract#1212 (Lunar and Planetary Institute, Houston, 2003)
J. Borovička, P. Kalenda, The Morávka meteorite fall: 4. Meteoroid dynamics and fragmentation in the atmosphere. Meteorit. Planet. Sci. 38, 1023–1043 (2003)
W.F. Bottke, M.C. Nolan, R. Greenberg, R.A Kolvoord, Collisional lifetimes and impact statistics of near-Earth asteroids. in Hazards Due to Comets and Asteroids, ed. by T. Gehrels (University of Arizona Press, Tucson, 1994), pp. 337–357
T.E. Bunch, D. Stöffler, The Kelly chondrite: a parent body surface metabreccia. Contrib. Mineral. Petrol. 44, 157–171 (1974)
Z. Ceplecha, Multiple fall of Příbram meteorites photographed. Bull. Astron. Inst. Czech. 12, 21–47 (1961)
Z. Ceplecha, Fireballs photographed in central Europe. Bull. Astron. Inst. Czech. 28, 328–340 (1977)
R.S. Clarke, The Meteoritical Bulletin 50. Meteoritics 6, 111–124 (1971)
A.F. Cook A working list of meteor streams, in Evolutionary and Physical Properties of Meteoroids, ed. by C.L.Hemenway, P.M. Millman, A.F. Cook (NASA SP-319, 1973) pp. 183–191
R.T. Dodd, S.F. Wolf, M.E. Lipschutz, An H chondrite stream: identification and confirmation. J. Geophys. Res. 98, 15105–15118 (1993)
J.D. Drummond, Earth-approaching asteroid streams. Icarus 89, 14–25 (1991)
O. Eugster S. Lorenzetti Y. Lin D. Wang, Earth-crossing asteroids as initial parent bodies of meteorites with CRE age <100,000 years (abstract). Meteorit. Planet. Sci. 38, A21 (2003)
R.V. Fodor, K. Keil, L.L. Wilkening, D.D. Bogard, E.K. Gibson, Origin and history of a meteorite parent-body regolith breccia: Carbonaceous and non-carbonaceous lithic fragments in the Abbott, New Mexico chondrite. In Tectonics and Mineral Resources of Southwestern North America, New Mexico. Geol. Soc. Sped. Pub. 6, 206–218 (1976)
M.M. Grady, Catalogue of Meteorites (Cambridge University. Press, 2000), 689 pp
T. Graf, K. Marti, Collisional history of H chondrites. J. Geophys. Res. 100, 21247–21263 (1995)
I. Halliday, Detection of a meteorite “stream”: observations of a second meteorite fall from the orbit of the Innisfree chondrite. Icarus 69, 550–556 (1987)
I.A. Halliday, The present day flux of meteorites to the Earth. in Accretion of extraterrestrial matter throughout Earth’s history, ed. by B. Peuker-Ehrenbrink, B. Schmitz (Kluwer Academic/Plenum, New York, 2001), pp. 305–318
I. Halliday, A.T. Blackwell, A.A. Griffin, Evidence for the existence of groups of meteorite-producing asteroidal fragments. Meteoritics 25, 93–99 (1990)
D. Heymann, On the origin of hypersthene chondrites: ages and shock effects of black chondrites. Icarus 6, 189–221 (1967)
R. Hutchison, Meteorites: A Petrologic, Chemical and Isotopic Synthesis (Cambridge University Press, Cambridge, 2004), 506 pp
T.J. Jopek, G.B. Valsecchi, C. Froeschlé, Asteroid meteoroid streams. In Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, 2002) pp. 645-652
G.W. Kallemeyn, A.E. Rubin, D. Wang, J.T. Wasson, Ordinary chondrites: bulk compositions, classification, lithophile-element fractionations, and composition-petrographic type relationships. Geochim. Cosmochim. Acta. 53, 2747–2767 (1989)
K. Keil, K. Fredriksson, The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites. J. Geophys. Res. 69, 3487–3515 (1964)
D.A. Kring, D.H. Hill, J.D. Gleason, D.T. Britt, G.J. Consolmagno, M. Farmer, S. Wilson, R. Haag, Portales Valley: a meteoritic sample of the brecciated and metal-veined floor of an impact crater on an H-chondrite asteroid. Meteorit. Planet. Sci. 34, 663–669 (1999)
D.W. Lingner, T.J. Huston, M. Hutson, M.E. Lipschutz, Chemical studies of H chondrites. I: mobile trace elements and gas retention ages. Geochim. Cosmochim. Acta. 51, 727–739 (1987)
M.E. Lipschutz, S.F. Wolf, S. Vogt, E. Michlovich, M.M. Lindstrom, M.E. Zolensky, D.W. Mittlefehldt, C. Satterwhite, L. Schultz, T. Loeken, P. Scherer, R.T. Dodd, D.W.G. Sears, P.H. Benoit, J.F. Wacker, R.G. Burns, D.S. Fisher, Consortium study of the unusual H chondrite regolith breccia. Noblesville. Meteoritic. 28, 528–537 (1993)
M.E. Lipschutz, S.F. Wolf, R.T. Dodd, Meteoroid streams as sources for meteorite falls: A status report. Planet. Space Sci. 45, 517–523 (1997)
J. Llorca, J.M. Trigo-Rodríguez, J.L. Ortiz, J.A. Docobo, J. García-Guinea, A.J. Castro-Tirado, A.E. Rubin, O. Eugster, W. Edwards, M. Laubenstein, I. Casanova, The Villalbeto de la Peña meteorite fall: I. Fireball energy, meteorite recovery, strewn field, and petrography. Meteorit. Planet. Sci. 40, 795–804 (2005)
K. Marti, T. Graf, Cosmic-ray exposure history of ordinary chondrites. Ann. Rev. Earth Planet. Sci. 20, 221–243 (1992)
A. Morbidelli, B. Gladman, Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteorit. Planet. Sci. 33, 999–1016 (1998)
D. Olsson-Steel, Identification of meteoroid streams from Apollo asteroids in the Adelaide radar orbit surveys. Icarus 75, 64–96 (1988)
A. Patzer, P. Scherer, H.W. Weber, L. Schultz New exposure ages of chondrites: Short transfer times from asteroid belt to Earth? Lunar Planet. Sci. 30, abstract#1145, (Lunar and Planetary Institute, Houston, 1999)
A. Pauls, B. Gladman, Decoherence time scales for “meteoroid streams”. Meteorit. Planet. Sci. 40, 1241–1256 (2005)
A.E. Rubin, Kamacite and olivine in ordinary chondrites: intergroup and intragroup relationships. Geochim. Cosmochim. Acta. 54, 1217–1232 (1990)
A.E. Rubin, E.R.D. Scott, G.J. Taylor, K. Keil, J.S.B. Allen, T.K. Mayeda, R.N. Clayton, D.D. Bogard, Nature of the H chondrite parent body regolith: evidence from the Dimmitt breccia. Proc. Lunar Planet. Sci. Conf. 13, A741–A754 (1983)
A.E. Rubin, F. Ulff-Møller, J.T. Wasson, W.D. Carlson, The Portales Valley meteorite breccia: Evidence for impact-induced melting and metamorphism of an ordinary chondrite. Geochim. Cosmochim. Acta. 65, 323–342 (2001)
L. Schultz, H.W. Weber, Noble gases and H chondrite meteoroid streams: No confirmation. J. Geophys. Res. 101, 21177–21181 (1996)
P. Spurný, J. Oberst, D. Heinlein, Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nature 423, 151–153 (2003)
H. Stauffer, H.C. Urey, Multiple fall of Příbram meteorites photographed III. Rare gas isotopes in the Velka stone meteorite. Bull. Astron. Inst. Czech. 13, 106–109 (1962)
G. Tancredi, A new fireball in early April: A possible association with the Příbram radiant (abstract). Meteorit. Planet. Sci. 41, A170 (2006)
J.M. Trigo-Rodríguez, J. Borovička, P. Spurný, J. Ortiz, J.A. Docobo, A.J. Castro-Tirado, J. Llorca, The Villelbeto de la Peña meteorite fall: II. Determination of atmospheric trajectory and orbit. Meteorit. Planet. Sci. 41, 505–517 (2006)
K. Tucek, Příbram 2. Morphological and mineralogical composition of the meteoric stones of Příbram. Bull. Astron. Inst. Czech. 12, 196–207 (1961)
M.-S. Wang, M.E. Lipschutz, Trace elements in primitive meteorites—VII Antarctic unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta. 71, 1062–1073 (2007)
S.F. Wolf, M.E. Lipschutz, Meteoroid streams: evidence from meteorites recovered on Earth. Earth, Moon Planet. 68, 605–637 (1995a)
S.F. Wolf, M.E. Lipschutz, Chemical studies of H chondrites 6. Antarctic/non-Antarctic compositional differences revisited. J. Geophys. Res. 100, 3335–3349 (1995b)
S.F. Wolf, M.-S. Wang, R.T. Dodd, M.E. Lipschutz, A second H-chondrite stream of falls. Meteoritics 30, 601 (1995)
C.A. Wood, Fall statistics of H chondrites: evidence of cometary origins for ordinary chondrites (abstract). Lunar Planet. Sci. 13, 873–874 (1982)