Cohomology of Subregular Tilting Modules for Small Quantum Groups

Wiley - 2002
Viktor Ostrik1
1Independent Moscow University, Moscow, Russia

Tóm tắt

Let U be a quantumgroup with divid d powers at root ofunity constructed froma rootsystem R .Let u U b th small quantumgroup.Th cohomologyof u with trivial coefficients was computed by Ginzburg and Kumar.It turns out to be isomorphic to the functions algebra of the nilpotent cone of a semisimpl algebraic group with root system R .In this not we calculate cohomology of u with coefficients in simplest reducible tilting modul with nontrivial cohomology.It appears to b isomorphic to th functions algebra of th closure of the subregular nilpotent orbit.

Từ khóa


Tài liệu tham khảo

Andersen, H. H. and Jantzen, J. C.:Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1985), 487–525.

Andersen, H. H., Polo, P. and Wen, K.: Representations of quantum algebras, Invent. Math. 104 (1991), 1–59.

Andersen, H. H.: Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), 149–159.

Broer, B.: Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), 1–20.

Ginzburg, V. and Kumar, S.: Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), 179–198.

Hesselink, W. H.: Characters of the nullcone, Math. Ann. 252 (1980), 179–182.

Jantzen, J. C.: Kohomologie von p-Lie-Algebren und nilpotent Elemente, Abh. Math. Sem. Univ. Hamburg 56 (1986), 191–219.

Kazhdan, D. and Verbitsky, M.: Cohomology of restricted quantized universal enveloping algebras, In: Quantum Deformations of Algebras and their Representations, Bar-Ilan University, (1993), pp. 107–115.

Kumar, S., Lauritzen, N. and Thomsen, J. M.: Frobenius splitting of cotangent bundles of £ag varieties, Invent. Math. 136(3) (1999), 603–621.

Lusztig, G.: Introduction to Quantum Groups, Birkhauser, Boston, 1993.

Ostrik, V.: Support varieties for quantum groups, Funktional. Anal. i Prilozhen. 32(4) (1998), 22–34.

Soergel, W.: Kazhdan-Lusztig-Polynome und eine Kombinatorik fur Kipp-Moduln, Represent. Theory 1 (1997), 37–68.

Wang, W.: Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), 935–936.