Cognitive Training for Military Application: a Review of the Literature and Practical Guide

Springer Science and Business Media LLC - Tập 3 - Trang 30-51 - 2018
Kara J. Blacker1,2, Joseph Hamilton3, Grant Roush1,2, Kyle A. Pettijohn1,2, Adam T. Biggs2
1The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, USA
2Naval Medical Research Unit Dayton, Wright-Patterson AFB, USA
3Randolph Macon College, Ashland, USA

Tóm tắt

In recent years, the potential to improve cognitive skills through training has captured the attention of academic researchers, the commercial market, and the general public. Numerous clinical and healthy populations have been identified as targets for cognitive training, and military personnel are one particular group that may be able to uniquely benefit from cognitive training interventions. Military operations involve a wide range of human performance skills, many of which are cognitive in nature. Use of cognitive training to improve these critical everyday skills for service members represents an untapped potential resource by which to improve operational readiness and warfighter performance. While much of the cognitive training research to date has been circumscribed within basic science pursuits, here we propose ways in which this research may start to be applied in a military setting. In the current review, we examine instances of military operations that may readily lend themselves to cognitive training. Further, we examine the existing literature from academic endeavors and pinpoint areas of exemplary efforts that can serve as a guide for military research to follow, as well as pitfalls to avoid. In particular, we identify and review evidence from the video game, working memory, and executive function training literatures. Finally, the goals of basic and applied science often differ, and that is certainly the case when comparing outcome-based research in a military context with mechanism-based research in an academic context. Therefore, we provide a guide for best practices when conducting cognitive training research specifically in a military setting. While cognitive training has attracted much controversy in both academia and commercial markets, we argue that utilizing near transfer effects in a targeted, outcome-based approach may represent a powerful tool to improve human performance in a number of military-relevant scenarios.

Tài liệu tham khảo

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: the same or different constructs? Psychological Bulletin, 131(1), 30–60. https://doi.org/10.1037/0033-2909.131.1.30. Agay, N., Yechiam, E., Carmel, Z., & Levkovitz, Y. (2010). Non-specific effects of methylphenidate (Ritalin) on cognitive ability and decision-making of ADHD and healthy adults. Psychopharmacology, 210(4), 511–519. https://doi.org/10.1007/s00213-010-1853-4. Alderton, D. L., Wolfe, J. H., & Larson, G. E. (1997). The ECAT battery. Military Psychology, 9, 5–37. https://doi.org/10.1207/s15327876mp0901_1. Allom, V., & Mullan, B. (2015). Two inhibitory control training interventions designed to improve eating behaviour and determine mechanisms of change. Appetite, 89, 282–290. https://doi.org/10.1016/j.appet.2015.02.022. Arciniegas, D. B., Held, K., & Wagner, P. (2002). Cognitive impairment following traumatic brain injury. Current Treatment Options in Neurology, 4(1), 43–57. Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin & Review, 22(2), 366–377. https://doi.org/10.3758/s13423-014-0699-x. Barman, A., Chatterjee, A., & Bhide, R. (2016). Cognitive impairment and rehabilitation strategies after traumatic brain injury. Indian Journal of Psychological Medicine, 38(3), 172–181. https://doi.org/10.4103/0253-7176.183086. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. Battleday, R. M., & Brem, A. K. (2015). Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: a systematic review. European Neuropsychopharmacology, 25(11), 1865–1881. https://doi.org/10.1016/j.euroneuro.2015.07.028. Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: learning to learn and action video games. Annual Review of Neuroscience, 35, 391–416. https://doi.org/10.1146/annurev-neuro-060909-152832. Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., Lu, Z. L., & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16961–16966. https://doi.org/10.1073/pnas.1417056111. Berryhill, M. E., & Jones, K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 521(2), 148–151. https://doi.org/10.1016/j.neulet.2012.05.074. Berryhill, M. E., Peterson, D. J., Jones, K. T., & Stephens, J. A. (2014). Hits and misses: leveraging tDCS to advance cognitive research. Frontiers in Psychology, 5, 800. https://doi.org/10.3389/fpsyg.2014.00800. Biggs, A. T., Cain, M. S., & Mitroff, S. R. (2015). Cognitive training can reduce civilian casualties in a simulated shooting environment. Psychological Science, 26(8), 1164–1176. https://doi.org/10.1177/0956797615579274. Blacker, K. J., Curby, K. M., Klobusicky, E., & Chein, J. M. (2014). The effects of action video game training on visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1992–2004. https://doi.org/10.1037/a0037556. Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434–454. https://doi.org/10.1007/s41465-017-0044-1. Bogdanova, Y., & Verfaellie, M. (2012). Cognitive sequelae of blast-induced traumatic brain injury: recovery and rehabilitation. Neuropsychological Review, 22(1), 4–20. https://doi.org/10.1007/s11065-012-9192-3. Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445–454. https://doi.org/10.1177/1745691613491271. Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76–106). Oxford, England: Oxford University Press. Brawley, A. M., & Pury, C. S. (2016). It's like doing a job analysis: You know more about qualitative methods than you may think. Industrial & Organizational Psychology, 9(4), 753–760. Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A., & Jonides, J. (2014). Neural effects of short-term training on working memory. Cognitive Affective & Behavioral Neuroscience, 14(1), 147–160. https://doi.org/10.3758/s13415-013-0244-9. Cantor, J., & Engle, R. W. (1993). Working-memory capacity as long-term memory activation: an individual-differences approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(5), 1101–1114. https://doi.org/10.1037/0278-7393.19.5.1101. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind's workspace: training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. https://doi.org/10.3758/PBR.17.2.193. Chen, Z., Veling, H., Dijksterhuis, A., & Holland, R. W. (2016). How does not responding to appetitive stimuli cause devaluation: evaluative conditioning or response inhibition? Journal of Experimental Psychology: General, 145(12), 1687–1701. https://doi.org/10.1037/xge0000236. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464. https://doi.org/10.1016/j.cpr.2010.11.003. Chisholm, J. D., & Kingstone, A. (2012). Improved top-down control reduces oculomotor capture: the case of action video game players. Attention, Perception, & Psychophysics, 74(2), 257–262. https://doi.org/10.3758/S13414-011-0253-0. Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingstone, A. (2010). Reduced attentional capture in action video game players. Attention, Perception, & Psychophysics, 72(3), 667–671. https://doi.org/10.3758/APP.72.3.667. Chu, D. (2007). Qualification standards for enlistment, appointment, and induction. Retrieved from Washington, DC: Ciuffreda, K. J., Levi, D. M., & Selenow, A. (1991). Amblyopia: Basic and clinical aspects: Butterworth-Heinemann. Cogan, A., Madey, J., Kaufman, W., Holmlund, G., & Bach-y-Rita, P. (1977). Pong game as a rehabilitation device. Paper presented at the conference on systems and devices for the disabled, Seattle: University of Washington School of Medicine. Colom, R., Roman, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M.,. .. Jaeggi, S. M. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41(5), 712–727. doi: https://doi.org/10.1016/J.Intell.2013.09.002. Colzato, L. S., van Leeuwen, P. J. A., van den Wildenberg, W. P. M., & Hommel, B. (2010). DOOM'd to switch: superior cognitive flexibility in players of first person shooter games. Frontiers in Psychology, 1, 1–5. https://doi.org/10.3389/fpsyg.2010.00008. Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Science, 7(12), 547–552. Council, N. R. (2015). Measuring human capabilities: an agenda for basic research on the assessment of individual and group performance potential for military accession. Washington, DC: The National Academic Press. Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches. Thousand oaks, C.A.: Sage. Dale, G., & Green, C. S. (2017). The changing face of video games and video gamers: future directions in the scientific study of video game play and cognitive performance. Journal of Cognitive Enhancement, 1–15. https://doi.org/10.1007/s41465-017-0015-6. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466. Deveau, J., Jaeggi, S. M., Zordan, V., Phung, C., & Seitz, A. R. (2015). How to build better memory training games. Frontiers in Systems Neuroscience, 8, 243. DoD Worldwide Numbers for TBI. (2018). Retrieved from http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi Dreary, I. (2008). Why do intelligent people live longer? Nature, 456(7219), 175–176. Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18, 321–326. https://doi.org/10.1111/j.1467-8721.2009.01660.x. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. https://doi.org/10.1037//0096-3445.128.3.309. Enriquez-Geppert, S., Huster, R. J., Figge, C., & Herrmann, C. S. (2014). Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting. Frontiers in Behavioral Neuroscience, 8, 420. https://doi.org/10.3389/fnbeh.2014.00420. Fay, T. B., Yeates, K. O., Taylor, H. G., Bangert, B., Dietrich, A., Nuss, K. E.,. .. Wright, M. (2010). Cognitive reserve as a moderator of postconcussive symptoms in children with complicated and uncomplicated mild traumatic brain injury. Journal of the International Neuropsychological Society, 16(1), 94–105. doi:https://doi.org/10.1017/S1355617709991007. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855. https://doi.org/10.1111/j.1467-9280.2007.01990.x. Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., & Greenwood, P. M. (2016). Placebo effects in cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7470–7474. https://doi.org/10.1073/pnas.1601243113. Foster, J. L., Harrison, T. L., Hicks, K. L., Draheim, C., Redick, T. S., & Engle, R. W. (2017). Do the effects of working memory training depend on baseline ability level? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(11), 1677–1689. https://doi.org/10.1037/xlm0000426. Gilleen, J., Michalopoulou, P. G., Reichenberg, A., Drake, R., Wykes, T., Lewis, S. W., & Kapur, S. (2014). Modafinil combined with cognitive training is associated with improved learning in healthy volunteers—a randomised controlled trial. European Neuropsychopharmacology, 24(4), 529–539. https://doi.org/10.1016/j.euroneuro.2014.01.001. Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia. Journal of Neuropsychiatry & Clinical Neuroscience, 6(4), 348–357. https://doi.org/10.1176/jnp.6.4.348. Gozli, D. G., Bavelier, D., & Pratt, J. (2014). The effect of action video game playing on sensorimotor learning: evidence from a movement tracking task. Human Movement Science, 38C, 152–162. https://doi.org/10.1016/j.humov.2014.09.004. Grafman, J., Jonas, B., & Salazar, A. (1990). Wisconsin card sorting test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury. Perceptual and Motor Skills, 71(3 Pt 2), 1120–1122. https://doi.org/10.2466/pms.1990.71.3f.1120. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence, and aggression: a report of the Vietnam head injury study. Neurology, 46(5), 1231–1238. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–538. https://doi.org/10.1038/nature01647. Green, C. S., & Bavelier, D. (2006). Effect of action video games on spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1465–1478. https://doi.org/10.1037/0096-1523.32.6.1465. Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94. https://doi.org/10.1111/j.1467-9280.2007.01853.x. Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28(3), 984–994. https://doi.org/10.1016/j.chb.2011.12.020. Green, C. S., Gorman, T., & Bavelier, D. (2016). Action video-game training and its effects on perception and attentional control. In T. Strobach & J. Karbach (Eds.), Cognitive training (pp. 107–116). Switzerland: Springer International Publishing. Groswasser, Z., Reider, G., II, Schwab, K., Ommaya, A. K., Pridgen, A., Brown, H. R.,. .. Salazar, A. M. (2002). Quantitative imaging in late TBI. Part II: cognition and work after closed and penetrating head injury: a report of the Vietnam head injury study. Brain Injury, 16(8), 681–690. doi:https://doi.org/10.1080/02699050110119835. Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Review, 44, 124–141. https://doi.org/10.1016/j.neubiorev.2013.09.015. Guerrieri, R., Nederkoorn, C., & Jansen, A. (2012). Disinhibition is easier learned than inhibition. The effects of (dis)inhibition training on food intake. Appetite, 59(1), 96–99. https://doi.org/10.1016/j.appet.2012.04.006. Haaland, K. Y., Sadek, J. R., Keller, J. E., & Castillo, D. T. (2016). Neurocognitive correlates of successful treatment of PTSD in female veterans. Journal of the International Neuropsychological Society, 22(6), 643–651. https://doi.org/10.1017/S1355617716000424. Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10), 1279–1296. Hamilton, J. A., Lambert, G., Suss, J., & Biggs, A. T. (2018). Can cognitive training imprive shoot/don’t-shoot performance with live ammunition? Preliminary evidence from live fire exercises. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiolology & Biofeedback, 30(1), 1–10. Haut, K. M., Lim, K. O., & MacDonald 3rd., A. (2010). Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology, 35(9), 1850–1859. https://doi.org/10.1038/npp.2010.52. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. https://doi.org/10.1038/nrn2298. Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., & Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12-15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(10), 1401–1408. Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57(5), 253–270. Houben, K., & Jansen, A. (2011). Training inhibitory control. A recipe for resisting sweet temptations. Appetite, 56(2), 345–349. https://doi.org/10.1016/j.appet.2010.12.017. Houben, K., & Jansen, A. (2015). Chocolate equals stop. Chocolate-specific inhibition training reduces chocolate intake and go associations with chocolate. Appetite, 87, 318–323. https://doi.org/10.1016/j.appet.2015.01.005. Houben, K., Nederkoorn, C., Wiers, R. W., & Jansen, A. (2011). Resisting temptation: Decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug & Alcohol Dependence, 116(1–3), 132–136. https://doi.org/10.1016/j.drugalcdep.2010.12.011. Houben, K., Havermans, R. C., Nederkoorn, C., & Jansen, A. (2012). Beer a no-go: learning to stop responding to alcohol cues reduces alcohol intake via reduced affective associations rather than increased response inhibition. Addiction, 107(7), 1280–1287. https://doi.org/10.1111/j.1360-0443.2012.03827.x. Huckans, M., Pavawalla, S., Demadura, T., Kolessar, M., Seelye, A., Roost, N.,. .. Storzbach, D. (2010). A pilot study examining effects of group-based Cognitive Strategy Training treatment on self-reported cognitive problems, psychiatric symptoms, functioning, and compensatory strategy use in OIF/OEF combat veterans with persistent mild cognitive disorder and history of traumatic brain injury. Journal of Rehabilitation Research & Development, 47(1), 43–60. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proc Natl Acad Sci U S A, 105(19), 6829–6833. https://doi.org/10.1073/pnas.0801268105. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning - implications for training and transfer. Intelligence, 38(6), 625–635. https://doi.org/10.1016/J.Intell.2010.09.001. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10081–10086. https://doi.org/10.1073/pnas.1103228108. Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory & Cognition, 42(3), 464–480. https://doi.org/10.3758/s13421-013-0364-z. Jha, A. P., Stanley, E. A., Kiyonaga, A., Wong, L., & Gelfand, L. (2010). Examining the protective effects of mindfulness training on working memory capacity and affective experience. Emotion, 10(1), 54–64. https://doi.org/10.1037/a0018438. Jones, A., & Field, M. (2013). The effects of cue-specific inhibition training on alcohol consumption in heavy social drinkers. Experimental Clinical Psychopharmacology, 21(1), 8–16. https://doi.org/10.1037/a0030683. Jongkees, B. J., Hommel, B., Kuhn, S., & Colzato, L. S. (2015). Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—a review. Journal of Psychiatric Research, 70, 50–57. https://doi.org/10.1016/j.jpsychires.2015.08.014. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671. Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990. https://doi.org/10.1111/j.1467-7687.2009.00846.x. Karbach, J., & Unger, K. (2014). Executive control training from middle childhood to adolescence. Frontiers in Psychology, 5, 390. https://doi.org/10.3389/fpsyg.2014.00390. Karbach, J., & Verhaeghen, P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. https://doi.org/10.1177/0956797614548725. Karle, J. W., Watter, S., & Shedden, J. M. (2010). Task switching in video game players: Benefits of selective attention but not resistance to proactive interference. Acta Psychologica, 134(1), 70–78. https://doi.org/10.1016/j.actpsy.2009.12.007. Keizer, A. W., Verment, R. S., & Hommel, B. (2010). Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. NeuroImage, 49(4), 3404–3413. https://doi.org/10.1016/j.neuroimage.2009.11.023. Kesler, S. R., Adams, H. F., Blasey, C. M., & Bigler, E. D. (2003). Premorbid intellectual functioning, education, and brain size in traumatic brain injury: an investigation of the cognitive reserve hypothesis. Applied Neuropsychology, 10(3), 153–162. https://doi.org/10.1207/S15324826AN1003_04. Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of theta and upper alpha oscillations. Experimental Psychology, 52(2), 99–108. https://doi.org/10.1027/1618-3169.52.2.99. Konen, T., Strobach, T., & Karbach, J. (2016). Working memory. In T. Strobach & J. Karbach (Eds.), Cognitive training: An overview of features and applications. Switzerland: Springer International Publishing. van Koningsbruggen, G. M., Veling, H., Stroebe, W., & Aarts, H. (2014). Comparing two psychological interventions in reducing impulsive processes of eating behaviour: effects on self-selected portion size. British Journal of Health Psychology, 19(4), 767–782. https://doi.org/10.1111/bjhp.12075. Kray, J., Karbach, J., Haenig, S., & Freitag, C. (2011). Can task-switching training enhance executive control functioning in children with attention deficit/−hyperactivity disorder? Frontiers in Human Neuroscience, 5, 180. https://doi.org/10.3389/fnhum.2011.00180. Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: can one construct predict them all? Journal of Personality and Social Psychology, 86(1), 148–161. https://doi.org/10.1037/0022-3514.86.1.148. Kuo, M. F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43(3), 192–199. https://doi.org/10.1177/1550059412444975. Larson, G. E., & Saccuzzo, D. P. (1989). Cognitive correlates of general intelligence: toward a process theory of g. Intelligence, 13, 5–31. https://doi.org/10.1016/0160-2896(89)90003-2. Lawrence, N. S., Verbruggen, F., Morrison, S., Adams, R. C., & Chambers, C. D. (2015). Stopping to food can reduce intake. Effects of stimulus-specificity and individual differences in dietary restraint. Appetite, 85, 91–103. https://doi.org/10.1016/j.appet.2014.11.006. Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 114(4), 599–611. https://doi.org/10.1037/0021-843X.114.4.599. Li, S. C., Schmiedek, F., Huxhold, O., Rocke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychological Aging, 23(4), 731–742. https://doi.org/10.1037/a0014343. Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551. https://doi.org/10.1038/nn.2296. Li, R., Polat, U., Scalzo, F., & Bavelier, D. (2010). Reducing backward masking through action game training. Journal of Vision, 10(14). https://doi.org/10.1167/10.14.33. Li, C. H., He, X., Wang, Y. J., Hu, Z., & Guo, C. Y. (2017). Visual working memory capacity can be increased by training on distractor filtering efficiency. Frontiers in Psychology, 8, 196. https://doi.org/10.3389/fpsyg.2017.00196. Light, G. A., & Swerdlow, N. R. (2015). Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Annals of the New York Academy of Sciences, 1344, 105–119. https://doi.org/10.1111/nyas.12730. Limitation on enlistment and induction of persons whose score on the armed forces qualification test is below a prescribed level, § 520 (2011). Logan, G. D. (1994). On the ability to inhibit thought and action: a users' guide to the stop signal paradigm. Lovden, M., Backman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. https://doi.org/10.1037/a0020080. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846. Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends in Cognitive Science, 12(4), 163–169. https://doi.org/10.1016/j.tics.2008.01.005. Machizawa, M. G., & Driver, J. (2011). Principal component analysis of behavioural individual differences suggests that particular aspects of visual working memory may relate to specific aspects of attention. Neuropsychologia, 49(6), 1518–1526. https://doi.org/10.1016/j.neuropsychologia.2010.11.032. McDermott, T. J., Badura-Brack, A. S., Becker, K. M., Ryan, T. J., Bar-Haim, Y., Pine, D. S.,. .. Wilson, T. W. (2016). Attention training improves aberrant neural dynamics during working memory processing in veterans with PTSD Cognitive Affective & Behavioral Neuroscience, 16(6), 1140–1149. doi:https://doi.org/10.3758/s13415-016-0459-7. Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Science, 49(2), 270–291. https://doi.org/10.1037/a0028228. Minear, M., & Shah, P. (2008). Training and transfer effects in task switching. Memory & Cognition, 36(8), 1470–1483. https://doi.org/10.3758/MC.336.8.1470. Mishra, J., Zinni, M., Bavelier, D., & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. Journal of Neuroscience, 31(3), 992–998. https://doi.org/10.1523/JNEUROSCI.4834-10.2011. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734. Mogle, J. A., Lovett, B. J., Stawski, R. S., & Sliwinski, M. J. (2008). What's so special about working memory? An examination of the relationships among working memory, secondary memory, and fluid intelligence. Psychological Science, 19(11), 1071–1077. https://doi.org/10.1111/j.1467-9280.2008.02202.x. Mohammed, S., Flores, L., Deveau, J., Hoffing, R. C., Phung, C., Parlett, C. M.,. .. Seitz, A. R. (2017). The benefits and challenges of implementing motivational features to boost cognitive training outcome. Journal of Cognitive Enhancement, 1(4), 491–507. Monsell, S. (2003). Task switching. Trends in Cognitive Science, 7(3), 134–140. Moore, W., Pedlow, S., Krishnamurty, P., Wolter, K., & Chicago, I. L. (2000). National longitudinal survey of youth 1997 (NLSY97). Retrieved from Chicago, IL: Morgeson, F. P., & Dierdorff, E. C. (2011). Work analysis: From technique to theory. In S. Zedeck (Ed.), APA handbook of industrial and organizational psychology (Vol. 2, pp. 3–41). Washington, D.C.: APA. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18, 46–60. https://doi.org/10.3758/s13423-010-0034. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901. Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron, 87(5), 932–945. https://doi.org/10.1016/j.neuron.2015.07.032. Patrick, J., & Moore, A. K. (1985). Development and reliability of a job analysis technique. Journal of Occupational Psychology, 58(2), 149–158. Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychonomic Bulletin & Review, 20(6), 1055–1079. https://doi.org/10.3758/s13423-013-0418-z. Rasmussen, R. E. (2007). The wrong target: the problem of mistargeting resulting in fratricide and civilian casualties. National Defense University Norfolk VA Joint Advanced Warfighting School. Raymont, V., Salazar, A. M., Krueger, F., & Grafman, J. (2011). Studying injured minds—the Vietnam head injury study and 40 years of brain injury research. Frontiers in Neurology, 2, 15. https://doi.org/10.3389/fneur.2011.00015. Redick, T. S. (2016). On the relation of working memory and multitasking: memory span and synthetic work performance. Journal of Applied Research in Memory and Cognition, 5(4), 401–409. https://doi.org/10.1016/j/jarmac.2016.05.003. Reisberg, D., Baron, J., & Kemler, D. G. (1980). Overcoming Stroop interference: the effects of practice on distractor potency. Journal of Experimental Psychology: Human Perception & Performance, 6(1), 140–150. Richardson, J. M. (2016). A design for maintaining maritime superiority. Naval War College Review, 69(2), 11–18. Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychological Aging, 26(4), 813–822. https://doi.org/10.1037/a0023631. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14931–14936. https://doi.org/10.1073/pnas.0506897102. Russell, T. L., Ford, L., & Ramsberger, P. (2014). Thoughts on the future of military enlisted selection and classification. Retrieved from Alexandria, VA: Sager, C. E., Peterson, N. G., Oppler, S. H., Rosse, R. L., & Walker, C. B. (1997). An examination of five indexes of test battery performance: analysis of the ECAT battery. Military Psychology, 9, 97–120. https://doi.org/10.1207/s15327876mp0901_6. Sandry, J., DeLuca, J., & Chiaravalloti, N. (2015). Working memory capacity links cognitive reserve with long-term memory in moderate to severe TBI: a translational approach. Journal of Neurology, 262(1), 59–64. https://doi.org/10.1007/s00415-014-7523-4. Schmiedek, F., Lovden, M., & Lindenberger, U. (2010). Hundred Days of Cognitive Training Enhance Broad Cognitive Abilities in Adulthood: Findings from the COGITO Study. Front Aging Neurosci, 2. doi:https://doi.org/10.3389/fnagi.2010.00027. Schneider, E. B., Sur, S., Raymont, V., Duckworth, J., Kowalski, R. G., Efron, D. T.,. .. Stevens, R. D. (2014). Functional recovery after moderate/severe traumatic brain injury: a role for cognitive reserve? Neurology, 82(18), 1636–1642. doi:https://doi.org/10.1212/WNL.0000000000000379. Schneiders, J. A., Opitz, B., Krick, C. M., & Mecklinger, A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, 21(11), 2555–2564. https://doi.org/10.1093/cercor/bhr037. Schwaighofer, M., Fischer, F., & Buhner, M. (2015). Does working memory training transfer? A meta-analysis including training conditions as moderators. Educational Psychologist, 50(2), 138–166. Shamosh, N. A., Deyoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R.,. .. Gray, J. R. (2008). Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19(9), 904–911. doi:https://doi.org/10.1111/j.1467-9280.2008.02175.x. Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & al., e. (2011). Neurofeedback and basic learning theory: implications for research and practice. Journal of Neurotherapy, 15, 292–304. doi:https://doi.org/10.1080/10874208.2011.623089. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is Working Memory Training Effective? Psychological Bulletin, 138(4), 628–654. https://doi.org/10.1037/A0027473. Silver, H., Feldman, P., Bilker, W., & Gur, R. C. (2003). Working memory deficit as a core neuropsychological dysfunction in schizophrenia. American Journal of Psychiatry, 160(10), 1809–1816. https://doi.org/10.1176/appi.ajp.160.10.1809. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do "brain-training" programs work? Psychological Science in the Public Interest, 17(3), 103–186. https://doi.org/10.1177/1529100616661983. Singh, B., Cable, G. G., Hampson, G. V., Pascoe, G. D., Corbett, M., & Smith, A. (2010). Hypoxia awareness training for aircrew: a comparison of two techniques. Aviation, Space, and Environmental Medicine, 81(9), 857–863. Smith, A. M. (2008). Hypoxia symptoms in military aircrew: long-term recall vs. acute experience in training. Aviation, Space, and Environmental Medicine, 79(1), 54–57. Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53. https://doi.org/10.1177/1073858410386614. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460. https://doi.org/10.1017/S1355617702813248. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004. Strobach, T., & Karbach, J. (2016). Cognitive training: An overview of features and applications. Switzerland: Springer International Publishing. Strobach, T., Frensch, P. A., & Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24. https://doi.org/10.1016/J.Actpsy.2012.02.001. Strobach, T., Salminen, T., Karbach, J., & Schubert, T. (2014). Practice-related optimization and transfer of executive functions: a general review and a specific realization of their mechanisms in dual tasks. Psychological Research, 78(6), 836–851. https://doi.org/10.1007/s00426-014-0563-7. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. Tang, Y. Y., Holzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213–225. https://doi.org/10.1038/nrn3916. Thorell, L. B., Lindqvist, S., Bergman Nutley, S., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106–113. https://doi.org/10.1111/j.1467-7687.2008.00745.x. Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficicency of the other functions. (I). Psychological Review, 8(3). Tuholski, S. W., Engle, R. W., & Baylis, G. C. (2001). Individual differences in working memory capacity and enumeration. Memory & Cognition, 29(3), 484–492. https://doi.org/10.3758/BF03196399. Twamley, E. W., Jak, A. J., Delis, D. C., Bondi, M. W., & Lohr, J. B. (2014). Cognitive symptom management and rehabilitation therapy (CogSMART) for veterans with traumatic brain injury: pilot randomized controlled trial. Journal of Rehabilitation Research & Development, 51(1), 59–70. https://doi.org/10.1682/JRRD.2013.01.0020. Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory delay activity predicts individual differences in cognitive abilities. Journal of Cognitive Neuroscience, 1–13. https://doi.org/10.1162/jocn_a_00765. Vartanian, O., Coady, L., & Blackler, K. (2016). 3D multiple object tracking boosts working memory span: Implications for cognitive training in military populations. Military Psychology, 28(5), 353–360. Vedamurthy, I., Nahum, M., Bavelier, D., & Levi, D. M. (2015a). Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game. Scientific Reports, 5, 8482. https://doi.org/10.1038/srep08482. Vedamurthy, I., Nahum, M., Huang, S. J., Zheng, F., Bayliss, J., Bavelier, D., & Levi, D. M. (2015b). A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision Research, 114, 173–187. https://doi.org/10.1016/j.visres.2015.04.008. Veling, H., Aarts, H., & Stroebe, W. (2013). Using stop signals to reduce impulsive choices for palatable unhealthy foods. British Journal of Health Psychology, 18(2), 354–368. https://doi.org/10.1111/j.2044-8287.2012.02092.x. Veling, H., van Koningsbruggen, G. M., Aarts, H., & Stroebe, W. (2014). Targeting impulsive processes of eating behavior via the internet. Effects on body weight. Appetite, 78, 102–109. https://doi.org/10.1016/j.appet.2014.03.014. Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649–672. https://doi.org/10.1037/a0013170. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(24), 500–503. https://doi.org/10.1038/nature04171. Waller, D. C. (1994). The commandos: the inside story of America's secret soldiers: Simon and Schuster. Wilson, K. M., Head, J., & Helton, W. S. (2013). Friendly fire in a simulated firearms task. Paper presented at the human factors and ergonomics society, Los Angeles, CA. Wilson, K. M., Head, J., de Joux, N. R., Finkbeiner, K. M., & Helton, W. S. (2015). Friendly fire and the sustained attention to response task. Human Factors, 57(7), 1219–1234. https://doi.org/10.1177/0018720815605703. Zinke, K., Zeintl, M., Eschen, A., Herzog, C., & Kliegel, M. (2012). Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology, 58(1), 79–87. https://doi.org/10.1159/000324240. Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304–315. https://doi.org/10.1037/a0032982. Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. https://doi.org/10.1016/j.neuroimage.2010.08.078.