Coexisting living stromatolites and infaunal metazoans
Tóm tắt
Microbialites, bioaccretionary structures formed during the growth and metabolism of microorganisms (principally cyanobacteria) were the dominant lifeform in shallow late-Archean and Proterozoic oceans. During the Cambrian radiation of metazoan life, which began ~540 Mya, microbialite abundance and diversity further declined following a peak in the Mesoproterozoic. Notwithstanding contention, grazing and bioturbation effects of metazoans have been hypothesized as the dominant driver of modern microbialite scarcity. However, this metazoan–microbialite exclusion has not been fully explored in the few extant microbialites. Here we provide further evidence showing that living marine layered microbialites (stromatolites) coexist with a persistent assemblage of benthic macro-invertebrates, as has previously been demonstrated in some thrombolitic (clotted) microbialites. Surprisingly, these metazoans have active habits, such as burrowing, which should be expected to disrupt the layered matrix. As other studies have shown, through a network of burrows, metazoans can exploit local diurnal oxygen refugia within microbialites as well as escape predation. Our results, therefore, add novel evidence in support of the hypotheses that geologically, metazoans are not always incompatible with stromatolites, while ecologically, microbialites may act as micro-refugia for modern metazoans and historically have performed a similar inferred role in past ecosystems.
Tài liệu tham khảo
Allen MA, Goh F, Burns BP, Neilan BA (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7:82–96. doi:10.1111/j.1472-4669.2008.00187.x
Barber A (2011) Geophilomorph centipedes and the littoral habitat. Terr Arthropod Rev 4:17–39. doi:10.1163/187498311x546986
Buatois LA, Narbonne GM, Mangano MG, Carmona NB, Myrow P (2014) Ediacaran matground ecology persisted into the earliest Cambrian. Nat Commun 5:3544. doi:10.1038/ncomms4544
Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167. doi:10.2307/1543552
Dinger EC, Hendrickson DA, Winsborough BM, Marks JC (2006) Role of fish in structuring invertebrates on stromatolites in Cuatro Ciénegas, México. Hydrobiologia 563:407–420. doi:10.1007/s10750-006-0040-4
Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci 98:2170–2175. doi:10.1073/pnas.061514798
Eckman JE et al (2008) Wave and sediment dynamics along a shallow subtidal sandy beach inhabited by modern stromatolites. Geobiology 6:21–32. doi:10.1111/j.1472-4669.2007.00133.x
Edgcomb VP, Bernhard JM, Summons RE, Orsi W, Beaudoin D, Visscher PT (2014) Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay) Australia. ISME J 8:418–429. doi:10.1038/ismej.2013.130
Elser JJ, Watts J, Schampel JH, Farmer J (2006) Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecol Lett 9:295–303. doi:10.1111/j.1461-0248.2005.00873.x
Feldmann M, McKenzie JA (1998) Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201–212. doi:10.2307/3515490
Fenchel T (1998) Formation of laminated cyanobacterial mats in the absence of benthic fauna. Aquat Microb Ecol 14:235–240
Frantz CM, Petryshyn VA, Corsetti FA (2015) Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time. Geobiology 13:409–423. doi:10.1111/gbi.12145
Garcia-Pichel F, Al-Horani FA, Farmer JD, Ludwig R, Wade BD (2004) Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiology 2:49–57. doi:10.1111/j.1472-4669.2004.00017.x
Garrett P (1970) Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals. Science 169:171–173. doi:10.2307/1730310
Gingras M et al (2011) Possible evolution of mobile animals in association with microbial mats. Nat Geosci 4:372–375. doi:10.1038/ngeo1142
Griffiths CL (1976) Some new and notable Amphipoda from southern Africa. S Afr Mus 72:11–35
Grotzinger JP (1990) Geochemical model for Proterozoic stromatolite decline. Am J Sci 290:80–103
Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358. doi:10.1146/annurev.earth.27.1.313
Herman EK, Kump LR (2005) Biogeochemistry of microbial mats under Precambrian environmental conditions: a modelling study. Geobiology 3:77–92. doi:10.1111/j.1472-4669.2005.00048.x
Konishi Y, Prince J, Knott B (2001) The fauna of thrombolitic microbialites, Lake Clifton, western Australia. Hydrobiologia 457:39–47. doi:10.1023/a:1012229412462
Marshall CR (2006) Explaining the Cambrian “explosion” of animals. Annu Rev Earth Planet Sci 34:355–384. doi:10.1146/annurev.earth.33.031504.103001
Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3–24. doi:10.1111/j.1472-4669.2011.00305.x
Mobberley JM, Khodadad CL, Visscher PT, Reid RP, Hagan P, Foster JS (2015) Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Sci Rep 5:12601. doi:10.1038/srep12601
Myshrall KL et al (2010) Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8:337–354. doi:10.1111/j.1472-4669.2010.00245.x
Perissinotto R et al (2014) Tufa stromatolite ecosystems on the South African south coast. S Afr J Sci 110:89–96. doi:10.1590/sajs.2014/20140011
Pike J, Bernhard JM, Moreton SG, Butler IB (2001) Microbioirrigation of marine sediments in dysoxic environments: implications for early sediment fabric formation and diagenetic processes. Geology 29:923–926. doi:10.1130/0091-7613(2001)029<0923:momsid>2.0.co;2
Planavsky N, Ginsburg RN (2009) Taphonomy of modern marine Bahamian microbialites. Palaios 24:5–17. doi:10.2110/palo.2008.p08-001r
Reid RP et al (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992. doi:10.1038/35023158
Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214. doi:10.1046/j.1365-3091.2000.00003.x
Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238. doi:10.1016/j.sedgeo.2005.12.015
Riding R (2011) The nature of stromatolites: 3500 million years of history and a century of research. In: Reitner J, Quéric NV, Arp G (eds) Advances in stromatolite geobiology, vol 131. Springer, Berlin Heidelberg, pp 29–74
Riding R (2012) A hard life for cyanobacteria. Science 336:427–428. doi:10.1126/science.1221055
Rishworth GM, van Elden S, Perissinotto R, Miranda NAF, Steyn PP, Bornman TG (2016) Environmental influences on living marine stromatolites: insights from benthic microalgal communities. Environ Microbiol 18:503–513. doi:10.1111/1462-2920.13116
Ruvindy R, White RA III, Neilan BA, Burns BP (2016) Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J 10:183–196. doi:10.1038/ismej.2015.87
Smith CR, Levin LA, Hoover DJ, McMurtry G, Gage JD (2000) Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep Sea Res Part II Top Stud Oceanogr 47:227–257. doi:10.1016/S0967-0645(99)00108-3
Smith AM, Uken R, Thackeray Z (2005) Cape Morgan peritidal stromatolites: the origin of lamination. S Afr J Sci 101:107–108
Smith AM et al (2011) Rock pool tufa stromatolites on a modern South African wave-cut platform: partial analogues for Archaean stromatolites? Terra Nova 23:375–381. doi:10.1111/j.1365-3121.2011.01022.x
Tarhan LG, Planavsky NJ, Laumer CE, Stolz JF, Reid RP (2013) Microbial mat controls on infaunal abundance and diversity in modern marine microbialites. Geobiology 11:485–497. doi:10.1111/gbi.12049
Walter MR, Heys GR (1985) Links between the rise of the metazoa and the decline of stromatolites. Precambrian Res 29:149–174. doi:10.1016/0301-9268(85)90066-X
White RA III et al (2016) Metagenomic analysis suggests modern freshwater microbialites harbor a core and distinct microbial community. Front Microbiol 6:1531. doi:10.3389/fmicb.2015.01531