Coefficient of restitution and linear–dashpot model revisited

Thomas Schwager1, Thorsten Pöschel2
1Charité, Berlin, Germany
2Physikalisches Institut, Universität Bayreuth, Bayreuth (Germany)

Tóm tắt

With the assumption of a linear–dashpot interaction force, the coefficient of restitution, $$\varepsilon_d^0(k, \gamma)$$ , can be computed as a function of the elastic and dissipative material constants, k and γ by integrating Newton’s equation of motion for an isolated pair of colliding particles. If we require further that the particles interact exclusively repulsive, which is a common assumption in granular systems, we obtain an expression $$\varepsilon_d(k, \gamma)$$ which differs even qualitatively from the known result $$\varepsilon_d^0(k, \gamma)$$ . The expression $$\varepsilon_d(k, \gamma)$$ allows to relate Molecular Dynamics simulations to event-driven Molecular Dynamics for a widely used collision model.

Từ khóa


Tài liệu tham khảo

Brilliantov N.V. and Pöschel T. (2004). Kinetic Theory of Granular Gases. Clarendon, Oxford

Brilliantov N.V., Spahn F., Hertzsch J.M. and Pöschel T. (1996). A model for collisions in granular gases. Phys. Rev. E 53: 5382

Campbell C.S. (2002). Granular shear flows at the elastic limit. J. Fluid Mech. 465: 261

Engel P.A. (1978). Impact Wear of Materials. Elsevier, Amsterdam

Goldenberg C. and Goldhirsch I. (2004). Small and large scale granular statics. Granul. Matter 6: 87

Goldhirsch I. and Goldenberg C. (2004). Stress in dense granular materials. In: Hinrichsen, H. and Wolf, D.E. (eds) The Physics of Granular Media., pp 3. Wiley, Weinheim

Hertz H. (1882). Über die Berührung fester elastischer Körper. J. f reine u angewandte Math. 92: 156

Kadau D., Schwesig D., Theuerkauf J. and Wolf D.E. (2006). Influence of particle elasticity in shear testers. Granul. Matter 8: 35

Kruggel-Emden H., Simsek E., Rickelt S., Wirtz S. and Scherer V. (2007). Review and extension of normal force models for the Discrete Element Method. Powder Technol. 171: 157

Luding S. (1997). Stress distribution in static two dimensional granular model media in the absence of friction. Phys. Rev. E 55: 4720

Luding S. (1998). Collisions & contacts between two particles. In: Herrmann, H.J., J.-P. Hovi, J.P. and Luding, S. (eds) Physics of dry granular Media., pp 285. Kluwer, Dordrecht

Luding S. (1998b). Die Physik kohäsionsloser granularer Medien (Habilitation thesis; in german). Logos Verlag, Berlin

Luding S., Clément E., Blumen A., Rajchenbach J. and Duran J. (1994a). Anomalous energy dissipation in molecular dynamics simulations of grains: The “detachment” effect. Phys. Rev. E 50: 4113

Luding S., Clément E., Blumen A., Rajchenbach J. and Duran J. (1994b). Onset of convection in molecular dynamics simulations of grains. Phys. Rev. E 50: R1762

Matuttis G., Luding S. and Herrmann H.J. (2000). Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109: 278

Meerson B., Pöschel T. and Bromberg Y. (2003). Close-packed floating clusters: Granular hydrodynamics beyond the freezing point?. Phys. Rev. Lett. 91: 24,301

Mouraille O., Mulder W.A. and Luding S. (2006). Sound wave acceleration in granular materials. J. Stat. Mech. 2006: P07,023

Oger L., Savage S.B., Corriveau D. and Sayed M. (1998). Yield and deformation of an assmebly of disks subjected to a deviatoric stress loading. Mech. Mater. 27: 189

Pöschel T. and Schwager T. (2005). Computational Granular Dynamics. Springer, Berlin

Ramírez R., Pöschel T., Brilliantov N.V. and Schwager T. (1999). Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60: 4465

Schäfer J. and Wolf D.E. (1995). Bistability in simulated granular flow along corrugated walls. Phys. Rev. E 51: 6154

Schäfer J., Dippel S. and Wolf D.E. (1996). Force schemes in simulations of granular materials. J. Phys. I 6: 5

Schwager T. (2007). Coefficient of restitution for viscoelastic disks. Phys. Rev. E 75: 051,305

Schwager T. and Pöschel T. (1998). Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57: 650

Schwager, T., Pöschel, T.: Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. arXiv:07081434 (2007)

Taguchi Y. (1992a). Powder turbulence: Direct onset of turbulent flow. J. Phys. I 2: 2103

Taguchi Yh. (1992b). New origin of a convective motion: elastically induced convection in granular materials. Phys. Rev. Lett. 69: 1367

Tanaka T., Ishida T. and Tsuji Y. (1991). Direct numerical simulation of granular plug flow in a horizontal pipe. the case of cohesionless particles (in japanese). Kiron B 57–534: 456

Thompson P.A. and Grest G.A. (1991). Granular flow: friction and the dilatancy transition. Phys. Rev. Lett. 67: 1751

Tsuji Y., Tanaka T. and Ishida T. (1991). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71: 239

Weir G. and Tallon S. (2005). The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60: 3637

Wolf, D.E.: How to simulate granular matter. In: Blügel, S., Gompper, G., Koch, E., Müller-Krumbhaar, H., Spatschek, R., Winkler, R.G. (eds.) Computational Condensed Matter Physics—Lecture Manuscripts of the 37th Spring School of the Institute of Solid State Research, IFF-Ferienkurs, vol 32. Forschungszentrum, Jülich, p. B13 (2006)