Codon Bias as a Means to Fine-Tune Gene Expression

Molecular Cell - Tập 59 - Trang 149-161 - 2015
Tessa E.F. Quax1,2, Nico J. Claassens1, Dieter Söll3, John van der Oost1
1Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
2Institut für Biologie II, Albert Ludwig Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
3Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA

Tài liệu tham khảo

Agris, 2007, tRNA’s wobble decoding of the genome: 40 years of modification, J. Mol. Biol., 366, 1, 10.1016/j.jmb.2006.11.046 Andersson, 1990, Codon preferences in free-living microorganisms, Microbiol. Rev., 54, 198, 10.1128/MMBR.54.2.198-210.1990 Angov, 2008, Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host, PLoS ONE, 3, e2189, 10.1371/journal.pone.0002189 Begley, 2007, Trm9-catalyzed tRNA modifications link translation to the DNA damage response, Mol. Cell, 28, 860, 10.1016/j.molcel.2007.09.021 Bentele, 2013, Efficient translation initiation dictates codon usage at gene start, Mol. Syst. Biol., 9, 675, 10.1038/msb.2013.32 Berg, 1997, Growth rate-optimised tRNA abundance and codon usage, J. Mol. Biol., 270, 544, 10.1006/jmbi.1997.1142 Buchan, 2006, tRNA properties help shape codon pair preferences in open reading frames, Nucleic Acids Res., 34, 1015, 10.1093/nar/gkj488 Cannarozzi, 2010, A role for codon order in translation dynamics, Cell, 141, 355, 10.1016/j.cell.2010.02.036 Chan, 2012, Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins, Nat. Commun., 3, 937, 10.1038/ncomms1938 Charneski, 2013, Positively charged residues are the major determinants of ribosomal velocity, PLoS Biol., 11, e1001508, 10.1371/journal.pbio.1001508 Charneski, 2014, Positive charge loading at protein termini is due to membrane protein topology, not a translational ramp, Mol. Biol. Evol., 31, 70, 10.1093/molbev/mst169 Chen, 2004, Codon usage between genomes is constrained by genome-wide mutational processes, Proc. Natl. Acad. Sci. U S A, 101, 3480, 10.1073/pnas.0307827100 Chu, 2014, Translation elongation can control translation initiation on eukaryotic mRNAs, EMBO J., 33, 21, 10.1002/embj.201385651 Coleman, 2008, Virus attenuation by genome-scale changes in codon pair bias, Science, 320, 1784, 10.1126/science.1155761 Crick, 1966, Codon–anticodon pairing: the wobble hypothesis, J. Mol. Biol., 19, 548, 10.1016/S0022-2836(66)80022-0 Dana, 2014, The effect of tRNA levels on decoding times of mRNA codons, Nucleic Acids Res., 42, 9171, 10.1093/nar/gku646 Dittmar, 2005, Selective charging of tRNA isoacceptors induced by amino-acid starvation, EMBO Rep., 6, 151, 10.1038/sj.embor.7400341 Dittmar, 2006, Tissue-specific differences in human transfer RNA expression, PLoS Genet., 2, e221, 10.1371/journal.pgen.0020221 dos Reis, 2004, Solving the riddle of codon usage preferences: a test for translational selection, Nucleic Acids Res., 32, 5036, 10.1093/nar/gkh834 Drummond, 2008, Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution, Cell, 134, 341, 10.1016/j.cell.2008.05.042 Elf, 2005, What makes ribosome-mediated transcriptional attenuation sensitive to amino acid limitation?, PLoS Comput. Biol., 1, e2, 10.1371/journal.pcbi.0010002 Elf, 2003, Selective charging of tRNA isoacceptors explains patterns of codon usage, Science, 300, 1718, 10.1126/science.1083811 Fluman, 2014, mRNA-programmed translation pauses in the targeting of E. coli membrane proteins, eLife, 3, e03440, 10.7554/eLife.03440 Frenkel-Morgenstern, 2012, Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels, Mol. Syst. Biol., 8, 572, 10.1038/msb.2012.3 Gardin, 2014, Measurement of average decoding rates of the 61 sense codons in vivo, eLife, 3, 1, 10.7554/eLife.03735 Gibson, 2014, Programming biological operating systems: genome design, assembly and activation, Nat. Methods, 11, 521, 10.1038/nmeth.2894 Gingold, 2014, A dual program for translation regulation in cellular proliferation and differentiation, Cell, 158, 1281, 10.1016/j.cell.2014.08.011 Godinic-Mikulcic, 2014, Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs, Nucleic Acids Res., 42, 5191, 10.1093/nar/gku164 Goodman, 2013, Causes and effects of N-terminal codon bias in bacterial genes, Science, 342, 475, 10.1126/science.1241934 Gould, 2014, Computational tools and algorithms for designing customized synthetic genes, Front. Bioeng. Biotechnol., 2, 41, 10.3389/fbioe.2014.00041 Gouy, 1982, Codon usage in bacteria: correlation with gene expressivity, Nucleic Acids Res., 10, 7055, 10.1093/nar/10.22.7055 Grantham, 1980, Codon catalog usage and the genome hypothesis, Nucleic Acids Res., 8, r49, 10.1093/nar/8.1.197-c Gromadski, 2006, A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity, Mol. Cell, 21, 369, 10.1016/j.molcel.2005.12.018 Grosjean, 2010, Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes, FEBS Lett., 584, 252, 10.1016/j.febslet.2009.11.052 Gustafsson, 2004, Codon bias and heterologous protein expression, Trends Biotechnol., 22, 346, 10.1016/j.tibtech.2004.04.006 Gustafsson, 2012, Engineering genes for predictable protein expression, Protein Expr. Purif., 83, 37, 10.1016/j.pep.2012.02.013 Gutman, 1989, Nonrandom utilization of codon pairs in Escherichia coli, Proc. Natl. Acad. Sci. U S A, 86, 3699, 10.1073/pnas.86.10.3699 Hershberg, 2008, Selection on codon bias, Annu. Rev. Genet., 42, 287, 10.1146/annurev.genet.42.110807.091442 Ikemura, 1985, Codon usage and tRNA content in unicellular and multicellular organisms, Mol. Biol. Evol., 2, 13 Ingolia, 2014, Ribosome profiling: new views of translation, from single codons to genome scale, Nat. Rev. Genet., 15, 205, 10.1038/nrg3645 Ingolia, 2009, Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, 324, 218, 10.1126/science.1168978 Ingolia, 2011, Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 147, 789, 10.1016/j.cell.2011.10.002 Kanaya, 1999, Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis, Gene, 238, 143, 10.1016/S0378-1119(99)00225-5 Khade, 2011, Messenger RNA interactions in the decoding center control the rate of translocation, Nat. Struct. Mol. Biol., 18, 1300, 10.1038/nsmb.2140 Kimchi-Sarfaty, 2007, A “silent” polymorphism in the MDR1 gene changes substrate specificity, Science, 315, 525, 10.1126/science.1135308 Knight, 2001, A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes, Genome Biol., 2 Komar, 2009, A pause for thought along the co-translational folding pathway, Trends Biochem. Sci., 34, 16, 10.1016/j.tibs.2008.10.002 Kudla, 2009, Coding-sequence determinants of gene expression in Escherichia coli, Science, 324, 255, 10.1126/science.1170160 Lajoie, 2013, Probing the limits of genetic recoding in essential genes, Science, 342, 361, 10.1126/science.1241460 Li, 2012, The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria, Nature, 484, 538, 10.1038/nature10965 Li, 2014, Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources, Cell, 157, 624, 10.1016/j.cell.2014.02.033 Maertens, 2010, Gene optimization mechanisms: a multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli, Protein Sci., 19, 1312, 10.1002/pro.408 Malyshev, 2014, A semi-synthetic organism with an expanded genetic alphabet, Nature, 509, 385, 10.1038/nature13314 Mukai, 2015, Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon, Sci. Rep., 5, 9699, 10.1038/srep09699 Mutalik, 2013, Precise and reliable gene expression via standard transcription and translation initiation elements, Nat. Methods, 10, 354, 10.1038/nmeth.2404 Novoa, 2012, A role for tRNA modifications in genome structure and codon usage, Cell, 149, 202, 10.1016/j.cell.2012.01.050 Pechmann, 2013, Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding, Nat. Struct. Mol. Biol., 20, 237, 10.1038/nsmb.2466 Pechmann, 2014, Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo, Nat. Struct. Mol. Biol., 21, 1100, 10.1038/nsmb.2919 Pop, 2014, Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation, Mol. Syst. Biol., 10, 770, 10.15252/msb.20145524 Purvis, 1987, The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis, J. Mol. Biol., 193, 413, 10.1016/0022-2836(87)90230-0 Qian, 2012, Balanced codon usage optimizes eukaryotic translational efficiency, PLoS Genet., 8, e1002603, 10.1371/journal.pgen.1002603 Quax, 2013, Differential translation tunes uneven production of operon-encoded proteins, Cell Rep., 4, 938, 10.1016/j.celrep.2013.07.049 Ran, 2012, Contributions of speed and accuracy to translational selection in bacteria, PLoS ONE, 7, e51652, 10.1371/journal.pone.0051652 Rovner, 2015, Recoded organisms engineered to depend on synthetic amino acids, Nature, 518, 89, 10.1038/nature14095 Saunders, 2010, Synonymous codon usage influences the local protein structure observed, Nucleic Acids Res., 38, 6719, 10.1093/nar/gkq495 Shah, 2013, Rate-limiting steps in yeast protein translation, Cell, 153, 1589, 10.1016/j.cell.2013.05.049 Shao, 2012, Synonymous codon ordering: a subtle but prevalent strategy of bacteria to improve translational efficiency, PLoS ONE, 7, e33547, 10.1371/journal.pone.0033547 Sharp, 1986, An evolutionary perspective on synonymous codon usage in unicellular organisms, J. Mol. Evol., 24, 28, 10.1007/BF02099948 Sharp, 1987, The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res., 15, 1281, 10.1093/nar/15.3.1281 Söll, 1966, Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique, J. Mol. Biol., 19, 556, 10.1016/S0022-2836(66)80023-2 Spencer, 2012, Silent substitutions predictably alter translation elongation rates and protein folding efficiencies, J. Mol. Biol., 422, 328, 10.1016/j.jmb.2012.06.010 Stadler, 2011, Wobble base-pairing slows in vivo translation elongation in metazoans, RNA, 17, 2063, 10.1261/rna.02890211 Stoletzki, 2007, Synonymous codon usage in Escherichia coli: selection for translational accuracy, Mol. Biol. Evol., 24, 374, 10.1093/molbev/msl166 Supek, 2010, On relevance of codon usage to expression of synthetic and natural genes in Escherichia coli, Genetics, 185, 1129, 10.1534/genetics.110.115477 Tats, 2008, Preferred and avoided codon pairs in three domains of life, BMC Genomics, 9, 463, 10.1186/1471-2164-9-463 Tuller, 2015, Multiple roles of the coding sequence 5′ end in gene expression regulation, Nucleic Acids Res., 43, 13, 10.1093/nar/gku1313 Tuller, 2010, An evolutionarily conserved mechanism for controlling the efficiency of protein translation, Cell, 141, 344, 10.1016/j.cell.2010.03.031 Tulloch, 2014, RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies, eLife, 3, e04531, 10.7554/eLife.04531 Welch, 2009, You’re one in a googol: optimizing genes for protein expression, J. R. Soc. Interface, 6, S467, 10.1098/rsif.2008.0520.focus Welch, 2009, Design parameters to control synthetic gene expression in Escherichia coli, PLoS ONE, 4, e7002, 10.1371/journal.pone.0007002 Wiedenheft, 2011, Structures of the RNA-guided surveillance complex from a bacterial immune system, Nature, 477, 486, 10.1038/nature10402 Woolstenhulme, 2013, Nascent peptides that block protein synthesis in bacteria, Proc. Natl. Acad. Sci. U S A, 110, E878, 10.1073/pnas.1219536110 Xu, 2013, Non-optimal codon usage is a mechanism to achieve circadian clock conditionality, Nature, 495, 116, 10.1038/nature11942 Zhang, 2009, Transient ribosomal attenuation coordinates protein synthesis and co-translational folding, Nat. Struct. Mol. Biol., 16, 274, 10.1038/nsmb.1554 Zhang, 2013, Non-random arrangement of synonymous codons in archaea coding sequences, Genomics, 101, 362, 10.1016/j.ygeno.2013.04.008 Zhou, 2009, Translationally optimal codons associate with structurally sensitive sites in proteins, Mol. Biol. Evol., 26, 1571, 10.1093/molbev/msp070 Zhou, 2013, Non-optimal codon usage affects expression, structure and function of clock protein FRQ, Nature, 495, 111, 10.1038/nature11833