Codiffusion of Gallium and Phosphorus Atoms in Silicon

Н. Ф. Зикриллаев1, S. B. Isamov1, S. Koveshnikov1, Z. T. Kenzhaev2, Kh. S. Turekeev1
1Tashkent State Technical University, 100095, Tashkent, Uzbekistan
2Karakalpak State University, 230112, Nukus, Uzbekistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bakhadirkhanov, M.K. and Isamov, S.B., Physical basis for the formation of a silicon-based heterovarigap structure, Zh. Tekh. Fiz., 2021, vol. 91, no. 11, p. 1678.

Bakhadyrkhanov, M.K., Zikrillaev, N.F., Narkulov, N., Sadykov, U.Kh., et al., On the concentration of electroactive atoms of transition group elements in silicon, Elektron. Obrab. Mater., 2005, no. 2, p. 90.

Chen, K., Kapadia, R., Harker, A., Desai, S., et al., Direct growth of single-crystalline III–V semiconductors on amorphous substrates, Nature Commun., 2016, vol. 7, p. 10502. https://doi.org/10.1038/ncomms10502

Bakhadirkhanov, M.K., Isamov, S.B., Zikrillaev, N.F., and Iliev, Kh.M., Functional capabilities of silicon with nanoclusters of manganese atoms, Surf. Eng. Appl. Chem., 2020, vol. 56, p. 734.

Adachi, S., Properties of Group−IV, III−V and II−VI Semiconductors, Chichester: John Wiley and Sons, 2005.

Bakhadyrkhanov, M.K., Isamov, S.B., Zikrillaev, N.F., and Arzikulov, E.U., Infrared quenching of photoconductivity in silicon with multiply charged manganese clusters, Elektron. Obrab. Mater., 2013, vol. 4, p. 43.

Bakhadyrkhanov, M.K., Mavlyanov, A.Sh., Sodikov, U.Kh., and Khakkulov, M.K., Silicon with binary elementary cells as a novel class of materials for future photoenergetics, Appl. Sol. Energy, 2015, vol. 51, p. 258.

Uvarov, A.V., Baranov, A.I., Vyacheslavova, E.A., Kalyuzhnyi, N.A., et al., Formation of heterostructures of GaP/Si photoconverters by the combined method of MOVPE and PEALD, Tech. Phys. Lett., 2021, vol. 47, p. 730. https://doi.org/10.1134/S1063785021070270

Bakhadyrhanov, M.K., Sodikov, U.X., Iliev, Kh.M., Tachilin, S.A., et al., Perspective material for photoenergetics on the basis of silicon with binary elementary cells, Mater. Phys. Chem., 2019, vol. 1, p. 89. https://doi.org/10.63019/mpc.v1i2.493

Bakhadirkhanov, M.K., Isamov, S.B., and Kenzhaev, Z.T., New materials for photovoltaics and optoelectronics based on silicon with binary nanoclusters of impurity atoms with controllable parameters, Euroasian J. Semicond. Sci. Eng., 2020, vol. 2, no. 5, p. 9.

Boltaks, B.I., Diffuziya i tochechnye defekty v poluprovodnikakh (Diffusion and Point Defects in Semiconductors), Leningrad: Nauka, 1972.

Bakhadirkhanov, M.K., Abdurakhmanov, B.A., and Zikrillaev, Kh.F., On the state of germanium in silicon under conditions of low-temperature diffusion, Pribory, 2018, no. 5, p. 39.

Bakhadyrkhanov, M.K., Iliev, Kh.M., Mavlonov, G.Kh., Ayupov, K.S., et al., Silicon with magnetic nanoclusters of manganese atoms as a new ferromagnetic material, Techn. Phys., 2019, no. 64, p. 385.

Zeer, G.M., Fomenko, O.Yu., and Ledyaeva, O.N., The use of scanning electron microscopy in solving actual problems of materials science, Zh. Sib. Fed. Univ., Khim., 2009, vol. 4, no. 2, p. 287.

Nakano, S., Liu, X., Han, X.F., and Kakimoto, K., Numerical analysis of phosphorus concentration distribution in a silicon crystal during directional solidification process, Crystals, 2021, vol. 11, no. 27, p. 1. https://doi.org/10.3390/cryst11010027

Aleksandrov, O.V. and Afonin, N.N., Specific features of the segregation-related redistribution of phosphorus during thermal oxidation of heavily doped silicon layers, Semiconductors, 2005, vol. 39, p. 615.

Zainabidinov, S., Nazyrov, D.E., and Bazarbaev, M.I., Diffusion, solubility, and electrical properties of samarium and ytterbium in silicon, Elektron. Obrab. Mater., 2006, no. 4, p. 90.

Aleksandrov, O.V., A model of high-and low-temperature phosphorus diffusion in silicon by a dual pair mechanism, Semiconductors, 2001, vol. 35, p. 1231.

Gadiyak, G.V., Diffusion of boron and phosphorus in silicon during high-temperature ion implantation, Semiconductors, 1997, vol. 31, p. 321.

Wittel, F. and Dunham, S., Diffusion of phosphorus in arsenic and boron doped silicon, Appl. Phys. Lett., 1995, vol. 66, no. 11, p. 1415. https://doi.org/10.1063/1.113219

Ardyshev, V.M. and Ardyshev, M.V., Activation and distribution of silicon implanted in gallium arsenide as a result of isothermal radiation annealing, Semiconductors, 1998, vol. 32, p. 1029.

Tishkovskii, E.G., Obodnikov, V.I., Taskin, A.A., Feklistov, K.V., et al., Redistribution of phosphorus implanted into silicon doped heavily with boron, Semiconductors, 2000, vol. 34, p. 629.

Averkiev, N.S., Kazakova, L.P., Lebedev, E.A., and Smirnova, N.N., Drift mobility of carriers in porous silicon, Semiconductors, 2001, vol. 35, p. 588.

Chkhartishvili, L. and Pagava, T., Apparent Hall mobility of charge carriers in silicon with nano-sized “metallic” inclusions, Nano Studies, 2013, vol. 8, p. 85.

Pomortseva, L.I., Minority-charge-carrier mobility at low injection level in semiconductors, Semiconductors, 2011, vol. 45, p. 436.

Kovtunenko, P.V., Fizicheskaya khimiya tverdogo tela. Kristally s defektami (Physical Chemistry of a Solid State. Crystals with Defects), Moscow: Vysshaya shkola, 1993.