Codanin-1 mutations engineered in human erythroid cells demonstrate role of CDAN1 in terminal erythroid maturation

Experimental Hematology - Tập 91 - Trang 32-38.e6 - 2020
Zachary C. Murphy1, Michael R. Getman1, Jaquelyn A. Myers1, Kimberly N. Burgos Villar2, Emily Leshen1, Ryo Kurita3, Yukio Nakamura4, Laurie A. Steiner1
1Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
2Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY
3Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
4Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan

Tài liệu tham khảo

Palis, 2014, Primitive and definitive erythropoiesis in mammals, Front Physiol, 5, 3, 10.3389/fphys.2014.00003 Ji, 2011, Formation of mammalian erythrocytes: chromatin condensation and enucleation, Trends Cell Biol, 21, 409, 10.1016/j.tcb.2011.04.003 Gautier, 2020, Comprehensive proteomic analysis of murine terminal erythroid differentiation, Blood Adv, 4, 1464, 10.1182/bloodadvances.2020001652 Roy, 2019, The pathogenesis, diagnosis and management of congenital dyserythropoietic anaemia type I, Br J Haematol, 185, 436, 10.1111/bjh.15817 Shalev, 2017, Morbidity and mortality of adult patients with congenital dyserythropoietic anemia type I, Eur J Haematol, 98, 13, 10.1111/ejh.12778 Renella, 2011, Codanin-1 mutations in congenital dyserythropoietic anemia type 1 affect HP1{alpha} localization in erythroblasts, Blood, 117, 6928, 10.1182/blood-2010-09-308478 Heimpel, 2006, Congenital dyserythropoietic anemia type I (CDA I): molecular genetics, clinical appearance, and prognosis based on long-term observation, Blood, 107, 334, 10.1182/blood-2005-01-0421 Dgany, 2002, Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1, Am J Hum Genet, 71, 1467, 10.1086/344781 Ask, 2012, Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply, EMBO J, 31, 2013, 10.1038/emboj.2012.55 Couch, 2019, Human erythroblasts with c-Kit activating mutations have reduced cell culture costs and remain capable of terminal maturation, Exp Hematol, 74, 10.1016/j.exphem.2019.04.001 Gautier, 2016, Comprehensive proteomic analysis of human erythropoiesis, Cell Rep, 16, 1470, 10.1016/j.celrep.2016.06.085 Hu, 2013, Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo, Blood, 121, 3246, 10.1182/blood-2013-01-476390 McGrath, 2017, Delineating stages of erythropoiesis using imaging flow cytometry, Methods, 112, 68, 10.1016/j.ymeth.2016.08.012 Kim, 2015, Assaying cell cycle status using flow cytometry, Curr Protoc Mol Biol, 111, 28.6.1, 10.1002/0471142727.mb2806s111 Myers, 2020, The histone methyltransferase Setd8 alters the chromatin landscape and regulates the expression of key transcription factors during erythroid differentiation, Epigenet Chromatin, 13, 1, 10.1186/s13072-020-00337-9 An, 2014, Global transcriptome analyses of human and murine terminal erythroid differentiation, Blood, 123, 3466, 10.1182/blood-2014-01-548305 Wickramasinghe, 2005, Advances in the understanding of the congenital dyserythropoietic anaemias, Br J Haematol, 131, 431, 10.1111/j.1365-2141.2005.05757.x Noy-Lotan, 2009, Codanin-1, the protein encoded by the gene mutated in congenital dyserythropoietic anemia type I (CDAN1), is cell cycle-regulated, Haematologica, 94, 629, 10.3324/haematol.2008.003327 Resnitzky, 2017, Morphological features of congenital dyserythropoietic anemia type: I. The role of electron microscopy in diagnosis, Eur J Haematol., 99, 366, 10.1111/ejh.12931 Avvakumov, 2011, Histone chaperones: modulators of chromatin marks, Mol Cell, 41, 502, 10.1016/j.molcel.2011.02.013 Huang, 2018, The histone chaperone ASF1 regulates the activation of ATM and DNA-PKcs in response to DNA double-strand breaks, Cell Cycle, 17, 1413, 10.1080/15384101.2018.1486165 Conrad, 2012, The MOF chromobarrel domain controls genome-wide H4K16 acetylation and spreading of the MSL complex, Dev Cell, 22, 610, 10.1016/j.devcel.2011.12.016 Alloisio, 1982, Alterations of globin chain synthesis and of red cell membrane proteins in congenital dyserythropoietic anemia I and II, Pediatr Res, 16, 1016, 10.1203/00006450-198212000-00010 Tamary, 1996, Clinical features and studies of erythropoiesis in Israeli Bedouins with congenital dyserythropoietic anemia type I, Blood, 87, 1763, 10.1182/blood.V87.5.1763.1763 Wickramasinghe, 1986, Studies of erythroblast function in congenital dyserythropoietic anaemia, type I: evidence of impaired DNA, RNA, and protein synthesis and unbalanced globin chain synthesis in ultrastructurally abnormal cells, J Clin Pathol, 39, 881, 10.1136/jcp.39.8.881 Kuleshov, 2016, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Res, 44, W90, 10.1093/nar/gkw377 Moreno-Mateos, 2015, CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo, Nat Methods, 12, 982, 10.1038/nmeth.3543 Gundry, 2016, Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9, Cell Rep, 17, 1453, 10.1016/j.celrep.2016.09.092 Giarratana, 2011, Proof of principle for transfusion of in vitro-generated red blood cells, Blood, 118, 5071, 10.1182/blood-2011-06-362038