Cocrystallization of axitinib with carboxylic acids: preparation, crystal structures and dissolution behavior

CrystEngComm - Tập 23 Số 32 - Trang 5504-5515
Bo-Ying Ren1, Xia-Lin Dai2, Jie Wang1, Chao Wu2, Tong‐Bu Lu1, Jia‐Mei Chen2
1Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

Tóm tắt

Three cocrystals of axitinib were prepared, and they demonstrated a significantly improved apparent solubility and dissolution rate without compromising physical stability.

Từ khóa


Tài liệu tham khảo

Pemovska, 2015, Nature, 519, 102, 10.1038/nature14119

McTigue, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 18281, 10.1073/pnas.1207759109

Cohen, 2008, J. Clin. Oncol., 26, 4708, 10.1200/JCO.2007.15.9566

Rugo, 2005, J. Clin. Oncol., 23, 5474, 10.1200/JCO.2005.04.192

Smith, 2014, Drug Metab. Dispos., 42, 918, 10.1124/dmd.113.056531

Likar, 2011, J. Pharm. Biomed. Anal., 55, 569, 10.1016/j.jpba.2011.02.021

R. S.Li , J. A.Stafford and R. S.Kania , Kinase Inhibitor Drugs , John Wiley & Sons , 2009 , pp. 167–201

Chen, 2015, Invest. New Drugs, 33, 521, 10.1007/s10637-015-0214-x

Praphanwittaya, 2020, J. Drug Delivery Sci. Technol., 55, 101462, 10.1016/j.jddst.2019.101462

Shi, 2019, Int. J. Pharm., 560, 19, 10.1016/j.ijpharm.2019.01.051

Kaur, 2018, J. Controlled Release, 285, 81, 10.1016/j.jconrel.2018.07.008

Dai, 2016, Cryst. Growth Des., 16, 4430, 10.1021/acs.cgd.6b00552

O'Malley, 2021, CrystEngComm, 21, 314

Wang, 2018, CrystEngComm, 20, 5945, 10.1039/C8CE00689J

Qiao, 2011, Int. J. Pharm., 419, 1, 10.1016/j.ijpharm.2011.07.037

Crisan, 2021, J. Therm. Anal. Calorim., 10.1007/s10973-020-10438-y

Li, 2015, Cryst. Growth Des., 15, 3785, 10.1021/acs.cgd.5b00439

Song, 2015, Cryst. Growth Des., 15, 4869, 10.1021/acs.cgd.5b00699

Joshi, 2018, Cryst. Growth Des., 18, 5853, 10.1021/acs.cgd.8b00534

Singaraju, 2019, Mol. Pharmaceutics, 17, 21, 10.1021/acs.molpharmaceut.9b00377

Dai, 2020, Cryst. Growth Des., 20, 5160, 10.1021/acs.cgd.0c00326

Li, 2018, Cryst. Growth Des., 18, 4270, 10.1021/acs.cgd.8b00807

Zhu, 2015, Cryst. Growth Des., 16, 483, 10.1021/acs.cgd.5b01491

Shinozaki, 2019, J. Pharm. Sci., 108, 2383, 10.1016/j.xphs.2019.02.014

Putra, 2017, Cryst. Growth Des., 18, 373, 10.1021/acs.cgd.7b01371

Newman, 2012, Org. Process Res. Dev., 17, 457, 10.1021/op300241f

Campeta, 2010, J. Pharm. Sci., 99, 3874, 10.1002/jps.22230

Ou, 2020, Chem. Commun., 56, 9950, 10.1039/D0CC03157G

Abramov, 2012, Org. Process Res. Dev., 17, 472, 10.1021/op300274s

Abramov, 2012, J. Pharm. Sci., 101, 3687, 10.1002/jps.23227

Zhu, 2018, Cryst. Growth Des., 18, 4701, 10.1021/acs.cgd.8b00684

Tao, 2013, CrystEngComm, 15, 7852, 10.1039/c3ce41188e

Cerreia Vioglio, 2017, Adv. Drug Delivery Rev., 117, 86, 10.1016/j.addr.2017.07.001

Flahive, 2008, Org. Process Res. Dev., 12, 637, 10.1021/op600280g

Kastelic, 2010, Cryst. Growth Des., 10, 4943, 10.1021/cg1010117

AIST: Integrated Spectral Database System of Organic Compounds

Wei, 2018, Cryst. Growth Des., 18, 7343, 10.1021/acs.cgd.8b00978

Hu, 2019, Mol. Pharmaceutics, 16, 4978, 10.1021/acs.molpharmaceut.9b00851

H. G.Brittain , Polymorphism in Pharmaceutical Solids , CRC Press , 2nd edn, 2009 , pp. 436–480

Dai, 2016, Cryst. Growth Des., 16, 4430, 10.1021/acs.cgd.6b00552

Babu, 2011, Cryst. Growth Des., 11, 2662, 10.1021/cg200492w