Cobalt phthalocyanine nanowires: Growth, crystal structure, and optical properties

Crystal Research and Technology - Tập 51 Số 2 - Trang 154-159 - 2016
Xiaolin Ji1,2,3, Taoyu Zou1,2,3, Hao Gong4, Qiong Wu5, Zhenfang Qiao1,2, Wei Wu6, Hai Wang2
1College of Physical Science and Technology, Yunnan University, Kunming, 650091 People's Republic of China
2Key Laboratory of Yunnan Provincial Higher Education Institutions for Organic Optoelectronic Materials and Devices, Kunming University, Kunming, 650214 People's Republic of China
3these authors contributed equally to this work
4Department of materials science and engineering, National University of Singapore, Singapore 119260, Singapore
5Department of Chemical Science and Technology, Kunming University, Yunnan, Kunming, 65200 People's Republic of China
6Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom

Tóm tắt

Cobalt phthalocyanine nanowires with new crystal structure and broad optical absorption spectra were fabricated by using organic vapor phase deposition method. The morphology, crystal structure and optical properties of CoPc nanowires were characterized by SEM, X‐ray diffraction, Fourier transform infrared and UV‐visible spectroscopies. Analyses of X‐ray diffraction patterns and Fourier transform infrared spectra indicate that the crystal structure of CoPc nanowires represents a new polymorph, which is designated J‐CoPc. These J‐CoPc nanowires with high directionality (average diameter ∼50 nm) surprisingly possess much broader optical absorption spectra in the visible spectral region than those of the α‐ and β‐phase CoPc, enabling high potential for practical applications in novel molecular electronic/optical devices.

Từ khóa


Tài liệu tham khảo

Aradilla D., 2015, Journal of Materials Chemistry A

10.1103/PhysRevApplied.4.014016

10.1039/C3TC31678E

10.1039/C4NR01768D

10.1002/adma.201401203

10.1039/b701327b

10.1002/adma.200800351

10.1039/C4NR05234J

10.1021/am5079144

10.1021/ja0642109

10.1039/C4CP03648D

10.1039/J19680002488

10.1107/S0567739481001563

10.1021/ja973815p

10.1021/cr030206t

10.1021/ja0582657

10.1021/jp8043048

10.1038/ncomms4079

Chen X., 2008, Phys. Rev. Lett., 101

10.1063/1.4904463

10.1016/j.sse.2013.03.003

10.1021/nl303419n

10.1002/adfm.201101799

10.1038/nature12597

10.1002/adfm.200900363

10.1038/am.2012.22

10.1016/j.snb.2014.03.027

10.1039/c0jm03411h

10.1039/c0jm03567j

10.1016/j.snb.2011.06.067

10.1021/es300186f

Ambily S., 1999, Indian Journal of Pure and Applied Physics, 37, 566

10.1080/00207219108921297

10.1016/S0030-3992(03)00068-9

10.1002/pssa.2211390110

Xiaolin J:Study of cobalt phthalocyanine nano‐materials prpared by organic vapor phase deposition and optical properties. School of Physics vol Master of Science.China Yunnan University 2015.

1973, Pi‐Form Metal Phthalocyanine

Hai W., 2014, New‐crystal‐structural cobalt phthalocyanine (J‐CoPc) nanowires and preparation method

10.1016/j.jssc.2004.01.019

10.1002/jrs.4125

10.1116/1.2731347

10.1016/j.saa.2007.10.050

10.1016/j.vibspec.2005.03.004

10.1139/v93-237

10.1021/ic0009829

Misra T., 1965, Reviews of Pure and Applied Chemistry, 15, 39

10.1016/j.cplett.2006.12.007

10.1021/jp709780a

10.1063/1.1671237

10.1063/1.1701086

10.1016/0301-0104(86)87066-5

Wei H., 2011, Organic electronics, 75