Cobalt phosphate modified TiO2nanowire arrays as co-catalysts for solar water splitting

Nanoscale - Tập 7 Số 15 - Trang 6722-6728
Guanjie Ai1,2,3,4, Rong Mo1,2,3,4, Hongxing Li1,2,3,4, Jianxin Zhong1,2,3,4
1Hunan 411105, P. R. China
2Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, P. R. China
3School of Physics and Optoelectronics
4Xiangtan University

Tóm tắt

This paper demonstrates improved effects and mechanistic insights using Co–Pi electrocatalyst-modified TiO2NWAs for solar water splitting.

Từ khóa


Tài liệu tham khảo

Lu, 2012, J. Mater. Chem., 22, 1375, 10.1039/C1JM15242D

Dette, 2014, Nano Lett., 14, 6533, 10.1021/nl503131s

Lee, 2014, Nanoscale, 6, 8649, 10.1039/C4NR02298J

Ai, 2015, J. Power Sources, 280, 5, 10.1016/j.jpowsour.2015.01.071

Zhang, 2013, Nanoscale, 5, 5801, 10.1039/c3nr01085f

Xu, 2000, Am. Mineral., 85, 543, 10.2138/am-2000-0416

Zhang, 2012, Chem. Rev., 112, 5520, 10.1021/cr3000626

Barber, 2009, Chem. Soc. Rev., 28, 185, 10.1039/B802262N

Zhang, 2013, J. Power Sources, 243, 908, 10.1016/j.jpowsour.2013.06.041

Kärkäs, 2014, Chem. Rev., 114, 11863, 10.1021/cr400572f

Paramasivam, 2012, Small, 8, 3073, 10.1002/smll.201200564

Tong, 2014, Nanoscale, 6, 6692, 10.1039/C4NR00602J

Yagi, 2001, Chem. Rev., 101, 21, 10.1021/cr980108l

Kanan, 2009, Chem. Soc. Rev., 38, 109, 10.1039/B802885K

Seol, 2013, Chem. Mater., 25, 184, 10.1021/cm303206s

Ma, 2008, J. Power Sources, 177, 470, 10.1016/j.jpowsour.2007.11.106

Al-Oweini, 2014, Angew. Chem., Int. Ed., 53, 11182, 10.1002/anie.201404664

Kim, 2014, J. Catal., 317, 126, 10.1016/j.jcat.2014.06.015

Ryu, 2014, J. Mater. Chem. A, 2, 5610, 10.1039/c4ta00339j

Kunz, 2015, Chem. Commun., 51, 290, 10.1039/C4CC08314H

Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018

Zhong, 2009, J. Am. Chem. Soc., 131, 6086, 10.1021/ja9016478

Li, 2013, Nat. Commun., 10.1038/ncomms3566

Jin, 2014, Appl. Catal., B, 148–149, 304, 10.1016/j.apcatb.2013.10.052

Tian, 2013, Small, 9, 2709, 10.1002/smll.201203202

Lutterman, 2009, J. Am. Chem. Soc., 131, 3838, 10.1021/ja900023k

Surendranath, 2010, J. Am. Chem. Soc., 132, 16501, 10.1021/ja106102b

Kanan, 2009, Chem. Soc. Rev., 38, 109, 10.1039/B802885K

Pilli, 2011, Energy Environ. Sci., 4, 5028, 10.1039/c1ee02444b

Carroll, 2015, Energy Environ. Sci., 8, 577, 10.1039/C4EE02869D

Liu, 2013, ACS Appl. Mater. Interfaces, 5, 4046, 10.1021/am400351m

Pilli, 2012, Phys. Chem. Chem. Phys., 14, 7032, 10.1039/c2cp40673j

Abdi, 2012, J. Phys. Chem. C, 116, 9398, 10.1021/jp3007552

Steinmiller, 2009, Proc. Natl. Acad. Sci. U. S. A., 106, 20633, 10.1073/pnas.0910203106

Bledowski, 2012, ChemPhysChem, 13, 3018, 10.1002/cphc.201200071

Ye, 2011, J. Phys. Chem. C, 115, 12464, 10.1021/jp200852c

Seabold, 2011, Chem. Mater., 23, 1105, 10.1021/cm1019469

Zhong, 2010, J. Am. Chem. Soc., 132, 4202, 10.1021/ja908730h

Klahr, 2012, J. Am. Chem. Soc., 134, 16693, 10.1021/ja306427f

Hamann, 2014, Nat. Mater., 13, 3, 10.1038/nmat3843

Wang, 2013, Nanoscale, 5, 4129, 10.1039/c3nr00569k

Barroso, 2011, J. Am. Chem. Soc., 133, 14868, 10.1021/ja205325v

Ai, 2014, J. Appl. Phys., 116, 174306, 10.1063/1.4901001

Sanjinés, 1994, J. Appl. Phys., 75, 2945, 10.1063/1.356190

Cui, 2014, RSC Adv., 4, 33408, 10.1039/C4RA05556J

McDonald, 2011, Chem. Mater., 23, 1686, 10.1021/cm1020614

Gan, 2014, Nanoscale, 6, 7142, 10.1039/c4nr01181c

Ai, 2015, RSC Adv., 5, 13544, 10.1039/C4RA15820B

Surendranath, 2010, J. Am. Chem. Soc., 132, 16501, 10.1021/ja106102b

McAlpin, 2010, J. Am. Chem. Soc., 132, 6882, 10.1021/ja1013344

Li, 2014, J. Mater. Chem. A, 2, 18420, 10.1039/C4TA03962A

Zhang, 2012, Chem. Rev., 112, 5520, 10.1021/cr3000626

Yang, 2014, J. Power Sources, 245, 301, 10.1016/j.jpowsour.2013.06.016

Barroso, 2011, J. Am. Chem. Soc., 133, 14868, 10.1021/ja205325v