Cobalt oxide functionalized nanoporous carbon electrodes and their excellent supercapacitive performance

RSC Advances - Tập 5 Số 18 - Trang 13930-13940
Dattatray S. Dhawale1,2,3,4, Gurudas P. Mane4,5,6,7, Stalin Joseph1,2,3, Siddulu Naidu Talapaneni4,5,6,7, Chokkalingam Anand1,2,3,4, Ajayan Mano4,5,6,7, Salem S. Al‐Deyab8,9,10,11,12, Kripal S. Lakhi1,2,3, Ajayan Vinu1,2,3,4
1AIBN, The University of Queensland,Brisbane 4072,Australia
2Australia
3Brisbane 4072
4International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
5Japan
6National Institute for Materials Science
7Tsukuba 305-0044
8Department of Chemistry
9King Saud University
10Petrochemical Research Chair, Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
11Riyadh
12Saudi Arabia

Tóm tắt

Nanoporous carbon (CMK-3-150) functionalized with different amounts of cobalt oxide (CoO) nanoparticles was synthesized by an incipient wetness impregnation technique for supercapacitor application.

Từ khóa


Tài liệu tham khảo

Arico, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368

Simon, 2008, Nat. Mater., 7, 845, 10.1038/nmat2297

Winter, 2004, Chem. Rev., 104, 4245, 10.1021/cr020730k

Bao, 2011, ACS Nano, 11, 1215

Kotz, 2000, Electrochim. Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6

Conway, 1997, J. Power Sources, 66, 1, 10.1016/S0378-7753(96)02474-3

Kötz, 2000, Electrochim. Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6

Huang, 2008, Angew. Chem., Int. Ed., 47, 520, 10.1002/anie.200703864

Dhawale, 2011, Electrochim. Acta, 56, 9482, 10.1016/j.electacta.2011.08.042

Patake, 2010, Curr. Appl. Phy., 10, 99, 10.1016/j.cap.2009.05.003

Liang, 2012, J. Mater. Chem., 22, 11062, 10.1039/c2jm31526b

Kandalkar, 2010, Synth. Met., 160, 1299, 10.1016/j.synthmet.2010.04.003

Dubal, 2011, Appl. Surf. Sci., 257, 3378, 10.1016/j.apsusc.2010.11.028

Zhang, 2009, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j

Miller, 2008, Science, 321, 651, 10.1126/science.1158736

Subramanian, 2006, J. Power Sources, 159, 361, 10.1016/j.jpowsour.2006.04.012

Balogun, 2015, J. Mater. Chem. A, 3, 1364, 10.1039/C4TA05565A

Zhi, 2013, Nanoscale, 5, 72, 10.1039/C2NR32040A

Plonska-Brzezinska, 2013, RSC Adv., 3, 25891, 10.1039/c3ra44249g

Hou, 2009, Electrochim. Acta, 54, 6166, 10.1016/j.electacta.2009.05.091

Liu, 2008, Electrochim. Acta, 53, 6497, 10.1016/j.electacta.2008.04.030

Xu, 2011, Adv. Mater. Res., 239–242, 1026, 10.4028/www.scientific.net/AMR.239-242.1026

Vinu, 2004, J. Phys. Chem. B, 108, 11496, 10.1021/jp048411f

Prasad, 2011, Sci. Technol. Adv. Mater., 12, 044602, 10.1088/1468-6996/12/4/044602

Jun, 2000, J. Am. Chem. Soc., 122, 10712, 10.1021/ja002261e

Ryoo, 2001, Adv. Mater., 13, 677, 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C

Kotz, 1999, Electrochim. Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6

Yoon, 2000, J. Electrochem. Soc., 147, 2507, 10.1149/1.1393561

Dai, 2011, Chem. Mater., 23, 2869, 10.1021/cm2002429

Dhawale, 2012, Electrochim. Acta, 77, 256, 10.1016/j.electacta.2012.05.095

Dhawale, 2013, ChemPhysChem, 14, 1563, 10.1002/cphc.201300132

Xiang, 2012, J. Mater. Chem., 22, 19161, 10.1039/c2jm33177b

Zhi, 2012, J. Power Sources, 208, 345, 10.1016/j.jpowsour.2012.02.048

Hulicova, 2006, Chem. Mater., 18, 2318, 10.1021/cm060146i

C. M. A. Brett and A. M. O.Grett, Electrochemistry: Principles, Methods, and Applications, Oxford University Press, Oxford, 1993

A. J. Bard and L. R.Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., 2nd edn, 2001

Jones, 2010, J. Electrochem. Soc., 157, A551, 10.1149/1.3314348