Cobalt-induced structural modulation in multiferroic Aurivillius-phase oxides

Journal of Materials Chemistry C - Tập 8 Số 25 - Trang 8466-8483
Vladimír Kovaľ1,2,3,4, Yang Shi5,6,7, I. Škorvánek8,2,3,4, Giuseppe Viola9,10, Radovan Búreš1,2,3,4, K. Saksl1,2,3,4, Pavla Roupcová11,12,13, Man Zhang9,10, Chenglong Jia5,6,7, Haixue Yan9,10
1Institute of Materials Research, Slovak Academy of Sciences, Kosice, Slovakia
2Kosice
3Slovak Academy of Sciences
4Slovakia
5China
6Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, China
7Lanzhou University
8Institute of Experimental Physics Slovak Academy of Sciences Kosice Slovakia
9Queen Mary University of London
10School of Engineering and Materials Science, Queen Mary University of London, UK
11CEITEC Brno University of Technology
12CEITEC, Brno University of Technology, Brno, Czech Republic
13Institute of Physics of Materials ASCR, Brno, Czech Republic

Tóm tắt

Nanoscale structural modulation with the disordered intergrowth of three- and four-layered Aurivillius phases gives rise to the ferromagnetic clustering of the FeO6 and CoO6 octahedra in cobalt-substituted Bi5FeTi3O15-derived compounds.

Từ khóa


Tài liệu tham khảo

Spaldin, 2019, Nat. Mater., 18, 203, 10.1038/s41563-018-0275-2

Bibes, 2008, Nat. Mater., 7, 425, 10.1038/nmat2189

Ma, 2011, Adv. Mater., 23, 1062, 10.1002/adma.201003636

Benedek, 2015, Dalton Trans., 44, 10543, 10.1039/C5DT00010F

Yan, 2005, Adv. Mater., 17, 1261, 10.1002/adma.200401860

Park, 1999, Nature, 401, 682, 10.1038/44352

Sharma, 2007, J. Solid State Chem., 180, 370, 10.1016/j.jssc.2006.10.031

Li, 2018, J. Mater. Chem. C, 6, 2733, 10.1039/C8TC00161H

Lomanova, 2006, Inorg. Mater. (Transl. of Neorg. Mater.), 42, 189, 10.1134/S0020168506020142

Zhao, 2014, Sci. Rep., 4, 5255, 10.1038/srep05255

Jartych, 2013, J. Magn. Magn. Mater., 342, 27, 10.1016/j.jmmm.2013.04.046

Ismailzade, 1967, Sov. Phys. Crystallogr., 12, 400

Srinivas, 1999, J. Phys.: Condens. Matter, 11, 3335

Srinivas, 1999, Mater. Res. Bull., 34, 989, 10.1016/S0025-5408(99)00093-8

Srinivas, 2004, Mater. Res. Bull., 39, 55, 10.1016/j.materresbull.2003.09.028

Sultanov, 1978, Fizika Tverdovo Tela, 20, 1888

Birenbaum, 2017, Phys. Rev. B, 95, 104419, 10.1103/PhysRevB.95.104419

Koval, 2018, J. Phys. Chem. C, 122, 15733, 10.1021/acs.jpcc.8b03801

Keeney, 2017, Sci. Rep., 7, 1737, 10.1038/s41598-017-01902-1

Jartych, 2016, Nanoscale Res. Lett., 11, 234, 10.1186/s11671-016-1436-3

Su, 2018, J. Alloys Compd., 747, 1002, 10.1016/j.jallcom.2018.03.076

Li, 2016, Dalton Trans., 45, 14049, 10.1039/C6DT02703B

Mao, 2009, Appl. Phys. Lett., 95, 082901, 10.1063/1.3213344

Wang, 2011, Chin. Phys. B, 20, 077701, 10.1088/1674-1056/20/7/077701

Liu, 2018, J. Mater. Sci., 53, 1014, 10.1007/s10853-017-1604-6

Yu, 2019, Mater. Res. Bull., 115, 235, 10.1016/j.materresbull.2019.04.002

Mao, 2013, Appl. Phys. Lett., 102, 072904, 10.1063/1.4793305

Zuo, 2017, J. Alloys Compd., 695, 2556, 10.1016/j.jallcom.2016.11.161

Zhang, 2017, Sci. Rep., 7, 43540, 10.1038/srep43540

Yu, 2017, Ceram. Int., 43, 14996, 10.1016/j.ceramint.2017.08.022

Sun, 2018, Sci. Rep., 8, 871, 10.1038/s41598-018-19448-1

Sun, 2014, Nanoscale, 6, 13494, 10.1039/C4NR03542A

T. Žák , in Mössbauer Spectroscopy in Materials Science , ed. M. Miglierini and D. Petridis , Kluwer Academic Publishers , Dordrecht , 1999 , p. 385

Rehr, 2000, Rev. Mod. Phys., 72, 621, 10.1103/RevModPhys.72.621

Lomanova, 2011, Russ. J. Inorg. Chem., 56, 616, 10.1134/S0036023611040188

PDF-2 Database, http://www.icdd.com/pdf-2/

Morozov, 2002, Russ. J. Gen. Chem., 72, 1038, 10.1023/A:1020734312307

Palai, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 77, 014110, 10.1103/PhysRevB.77.014110

Jankovský, 2013, Ceram.-Silik., 57, 83

V. R. Sastri , J. R.Perumareddi , V. R.Rao , G. V. S.Rayudu and J.-C.Bünzli , Modern aspects of Rare Earths and their Complexes , Elsevier Science , 2003 , p. 378

Vlasenko, 2013, Phys. Solid State, 55, 101, 10.1134/S1063783413010332

Wang, 2017, Ceram. Int., 43, 8792, 10.1016/j.ceramint.2017.04.010

Hermet, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 75, 220102(R), 10.1103/PhysRevB.75.220102

Kojima, 1995, J. Mol. Struct., 348, 37, 10.1016/0022-2860(95)08583-H

Ivanov, 2007, Solid State Sci., 9, 440, 10.1016/j.solidstatesciences.2007.03.018

Lomanova, 2012, J. Alloys Compd., 528, 103, 10.1016/j.jallcom.2012.03.040

Lu, 2012, Chin. Phys. B, 21, 047502, 10.1088/1674-1056/21/4/047502

Wang, 2015, Mater. Horiz., 2, 232, 10.1039/C4MH00202D

Kawano, 1976, Mater. Res. Bull., 11, 911, 10.1016/0025-5408(76)90163-X

Ben Ali, 2016, J. Magn. Magn. Mater., 398, 20, 10.1016/j.jmmm.2015.08.097

Ben Ali, 2015, Superlattices Microstruct., 84, 165, 10.1016/j.spmi.2015.05.002

Kanamori, 1959, J. Phys. Chem. Solids, 10, 87, 10.1016/0022-3697(59)90061-7

Zhang, 2016, J. Appl. Phys., 120, 154105, 10.1063/1.4965702

Koval, 2017, J. Mater. Chem. C, 5, 2669, 10.1039/C6TC04060H

Zuo, 2019, Ceram. Int., 45, 137, 10.1016/j.ceramint.2018.09.144

Grunes, 1983, Phys. Rev. B: Condens. Matter Mater. Phys., 27, 2111, 10.1103/PhysRevB.27.2111

Jiang, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 76, 214117, 10.1103/PhysRevB.76.214117

Yamamoto, 2008, X-Ray Spectrom., 37, 572, 10.1002/xrs.1103

Wen, 2015, Sci. Rep., 5, 15098, 10.1038/srep15098

Kumar, 2013, J. Appl. Phys., 113, 043918, 10.1063/1.4788801

Lee, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 82, 045113, 10.1103/PhysRevB.82.045113

Binder, 1986, Rev. Mod. Phys., 58, 801, 10.1103/RevModPhys.58.801

Chu, 2008, Nat. Mater., 7, 478, 10.1038/nmat2184

Béa, 2008, J. Phys.: Condens. Matter, 20, 434221