LaFeO3 có pha Cobalt cho sự phân hủy photo-Fenton của các chất ô nhiễm hữu cơ và tách nước hỗ trợ bởi ánh sáng nhìn thấy

Anupriya James1, John D. Rodney2,3, A. Manojbabu1, Sindhur Joshi1, Lavanya Rao4, B. Ramachandra Bhat4, N. K. Udayashankar1
1Department of Physics, National Institute of Technology Karnataka, Mangaluru, India
2Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon-si, Republic of Korea
3Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
4Department of Chemistry, National Institute of Technology Karnataka, Mangaluru, India

Tóm tắt

Nhu cầu ngày càng tăng đối với các nguồn năng lượng sạch và những lo ngại ngày càng tăng về ô nhiễm môi trường đã dẫn đến sự quan tâm đáng kể trong việc phát triển các hệ thống quang xúc tác và quang điện hóa hiệu quả. Ở đây, chúng tôi báo cáo về sự phân hủy xúc tác photo-Fenton của thuốc nhuộm Methylene Blue (MB) dưới ánh sáng nhìn thấy trên các xúc tác LaFeO3 và LaCoxFe1−xO3 (x = 0.01, 0.05, 0.1) được tổng hợp qua phương pháp đốt cháy đơn giản. LaCo0.01Fe0.99O3 đã cải thiện đáng kể hiệu suất xúc tác photo-Fenton của LaFeO3 từ 67,75% lên 93,85% trong việc loại bỏ thuốc nhuộm MB sau 180 phút chiếu sáng. Các hằng số tốc độ được tính toán thông qua cơ chế động học bậc nhất giả định lần lượt là 0,00532/phút cho LaFeO3 và 0,01476/phút cho LaCo0.01Fe0.99O3. Ngoài ra, xúc tác hiệu quả nhất LaCo0.01Fe0.99O3 đã thể hiện hiệu suất phân hủy đáng kể đối với Tetracycline (TC) và Methyl Orange (MO) với hiệu suất lần lượt là 93,81% và 69,67%, cho thấy tính linh hoạt của nó. Hơn nữa, LaFeO3 nguyên chất và doped đã được tối ưu hóa cấu trúc bằng phương pháp DFT và các khoảng băng được tính toán theo dữ liệu thực nghiệm. Thú vị là, xúc tác này có thể được sử dụng như một loại điện xúc tác kích thích ánh sáng bên cạnh việc xử lý nước bằng cách tận dụng chức năng kép của nó. Xúc tác LaCo0.01Fe0.99O3 đạt được mật độ dòng điện chuẩn 10 mA/cm2 cho sự phát triển H2 ở một điện thế quá mức là 297 mV so với RHE, và đã cải thiện thêm xuống còn 190 mV so với RHE dưới ánh sáng. Công trình này cung cấp những hiểu biết có giá trị về việc tích hợp một phần Co vào vị trí B của LaFeO3 cho sự phát triển của các hệ thống quang xúc tác và điện xúc tác kích thích ánh sáng nhìn thấy, hy vọng sẽ đóng góp vào sự tiến bộ của sản xuất năng lượng bền vững và phục hồi môi trường.

Từ khóa

#Photo-Fenton #LaFeO3 #xúc tác quang #điện xúc tác #ô nhiễm hữu cơ #ánh sáng nhìn thấy #tách nước

Tài liệu tham khảo

S. Khan, M. Mu. Naushad, J. Govarthanan, S.M. Iqbal, Alfadul, Emerging contaminants of high concern for the environment: current trends and future research. Environ. Res. 207, 112609 (2022). https://doi.org/10.1016/j.envres.2021.112609 A.I. Almulhim, P.B. Cobbinah, Urbanization-environment conundrum: an invitation to sustainable development in Saudi Arabian cities. Int. J. Sustain. Dev. World Ecol. 0, 1–15 (2022). https://doi.org/10.1080/13504509.2022.2152199 J. Zhang, Z. Zhang, W. Zhu, X. Meng, Boosted photocatalytic degradation of rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite. Appl. Surf. Sci. 502, 144275 (2020). https://doi.org/10.1016/j.apsusc.2019.144275 M. Farhan Hanafi, N. Sapawe, A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 31, A141–A150 (2020). https://doi.org/10.1016/j.matpr.2021.01.258 S. Benkhaya, S. M’rabet, A.E. Harfi, Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 6, e03271 (2020). https://doi.org/10.1016/j.heliyon.2020.e03271 R.H. Waghchaure, V.A. Adole, B.S. Jagdale, Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and eriochrome black T dyes by modified ZnO nanocatalysts: a concise review. Inorg. Chem. Commun. 143, 109764 (2022). https://doi.org/10.1016/j.inoche.2022.109764 A. Nawaz, A. Khan, N. Ali, N. Ali, M. Bilal, Fabrication and characterization of new ternary ferrites-chitosan nanocomposite for solar-light driven photocatalytic degradation of a model textile dye. Environ. Technol. Innov. 20, 101079 (2020). https://doi.org/10.1016/j.eti.2020.101079 C. Liu, H. Dai, C. Tan, Q. Pan, F. Hu, X. Peng, Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B Environ. 310, 121326 (2022). https://doi.org/10.1016/j.apcatb.2022.121326 P. Aravind, H. Selvaraj, S. Ferro, M. Sundaram, An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: understanding the degradation mechanism and toxicity assessment. J. Hazard. Mater. 318, 203–215 (2016). https://doi.org/10.1016/j.jhazmat.2016.07.028 A. Dumbrava, G. Prodan, D. Berger, M. Bica, Properties of PEG-capped CdS nanopowders synthesized under very mild conditions. Powder Technol. 270, 197–204 (2015). https://doi.org/10.1016/j.powtec.2014.10.012 E. Zuriaga-Agustí, E. Alventosa-deLara, S. Barredo-Damas, M.I. Alcaina-Miranda, M.I. Iborra-Clar, J.A. Mendoza-Roca, Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system. Water Res. 54, 199–210 (2014). https://doi.org/10.1016/j.watres.2014.01.064 X.-J. Jia, J. Wang, J. Wu, W. Teng, B. Zhao, H. Li, Y. Du, Facile synthesis of MoO2 /CaSO4 composites as highly efficient adsorbents for Congo red and rhodamine B. RSC Adv. 8, 1621–1631 (2018). https://doi.org/10.1039/C7RA11292K M. Priyadarshini, I. Das, M.M. Ghangrekar, L. Blaney, Advanced oxidation processes: performance, advantages, and scale-up of emerging technologies. J. Environ. Manage. 316, 115295 (2022). https://doi.org/10.1016/j.jenvman.2022.115295 I.O. Daramola, M.O. Ojemaye, A.I. Okoh, O.O. Okoh, Occurrence of herbicides in the aquatic environment and their removal using advanced oxidation processes: a critical review. Environ. Geochem. Health. (2022). https://doi.org/10.1007/s10653-022-01326-5 R. Tanveer, A. Yasar, A.-S. Nizami, A.B. Tabinda, Integration of physical and advanced oxidation processes for treatment and reuse of textile dye-bath effluents with minimum area footprint. J. Clean. Prod. 383, 135366 (2023). https://doi.org/10.1016/j.jclepro.2022.135366 X. Shi, L. Wang, A.A. Zuh, Y. Jia, F. Ding, H. Cheng, Q. Wang, Photo-Fenton reaction for the degradation of tetracycline hydrochloride using a FeWO4/BiOCl nanocomposite. J. Alloys Compd. 903, 163889 (2022). https://doi.org/10.1016/j.jallcom.2022.163889 Y. Liu, J. Li, J. Li, X. Yan, F. Wang, W. Yang, D.H.L. Ng, J. Yang, Active magnetic Fe3+-doped BiOBr micromotors as efficient solar photo-fenton catalyst. J. Clean. Prod. 252, 119573 (2020). https://doi.org/10.1016/j.jclepro.2019.119573 I. Oller, S. Malato, Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Curr. Opin. Green. Sustain. Chem. 29, 100458 (2021). https://doi.org/10.1016/j.cogsc.2021.100458 J.D. Rodney, S. Deepapriya, S.J. Das, M.C. Robinson, S. Perumal, S. Katlakunta, P. Sivakumar, H. Jung, C.J. Raj, Boosting overall electrochemical water splitting via rare earth doped cupric oxide nanoparticles obtained by co-precipitation technique. J. Alloys Compd. 921, 165948 (2022). https://doi.org/10.1016/j.jallcom.2022.165948 A. James, J.D. Rodney, L. Rao, B.R. Bhat, N.K. Udayashankar, Bi-functional LaMxFe1−xO3 (M = Cu, Co, Ni) for photo-fenton degradation of methylene blue and photoelectrochemical water splitting. Int. J. Hydrog Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.01.203 M.A. Abbas, J.H. Bang, Rising again: opportunities and challenges for platinum-free electrocatalysts. Chem. Mater. 27, 7218–7235 (2015). https://doi.org/10.1021/acs.chemmater.5b03331 K.S. Bhat, H.C. Barshilia, H.S. Nagaraja, Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction. Int. J. Hydrog Energy. 42, 24645–24655 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.098 J.D. Rodney, S. Deepapriya, M.C. Robinson, C.J. Raj, S. Perumal, B.C. Kim, S. Krishnan, S.J. Das, Dysprosium doped copper oxide (Cu1−xDyxO) nanoparticles enabled bifunctional electrode for overall water splitting. Int. J. Hydrog Energy 46, 27585–27596 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.014 L. Li, X. Wang, Y. Zhang, Enhanced visible light-responsive photocatalytic activity of LnFeO3 (ln = La, Sm) nanoparticles by synergistic catalysis. Mater. Res. Bull. 50, 18–22 (2014). https://doi.org/10.1016/j.materresbull.2013.10.027 Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catalysis, (n.d.). https://pubs.acs.org/doi/full/10.1021/acscatal.0c02947 . Accessed 13 Jan, 2023 Z. Ma, Y. Wang, Y. Lu, H. Ning, J. Zhang, Tackling challenges in perovskite-type metal oxide photocatalysts. Energy Technol. 9, 2001019 (2021). https://doi.org/10.1002/ente.202001019 M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A.A. Tahir, C. Wang, W. Luo, Perovskite-type lanthanum ferrite based photocatalysts: preparation, properties, and applications. J. Energy Chem. 66, 314–338 (2022). https://doi.org/10.1016/j.jechem.2021.08.023 P.J. Brennan, Laboratory and accelerated weathering spectra compared to sunlight through automotive glass, (n.d.) T.T.N. Phan, A.N. Nikoloski, P.A. Bahri, D. Li, Optimizing photocatalytic performance of hydrothermally synthesized LaFeO3 by tuning material properties and operating conditions. J. Environ. Chem. Eng. 6, 1209–1218 (2018). https://doi.org/10.1016/j.jece.2018.01.033 J. Qian, L. Shen, Y. Wang, L. Li, Y. Zhang, Photo-Fenton catalytic and photocatalytic performance of FeWO4 nanorods prepared at different pH. Mater. Lett. 334, 133705 (2023). https://doi.org/10.1016/j.matlet.2022.133705 M.-K. Son, H. Seo, M. Watanabe, M. Shiratani, T. Ishihara, Characteristics of crystalline sputtered LaFeO3 thin films as photoelectrochemical water splitting photocathodes. Nanoscale. 12, 9653–9660 (2020). https://doi.org/10.1039/D0NR01762K Y. Gao, G. Yang, Y. Dai, X. Li, J. Gao, N. Li, P. Qiu, L. Ge, Electrodeposited Co-substituted LaFeO3 for enhancing the photoelectrochemical activity of BiVO4. ACS Appl. Mater. Interfaces. 12, 17364–17375 (2020). https://doi.org/10.1021/acsami.9b21386 H. Wen, X. Luo, Tuning bandgaps of mixed halide and oxide perovskites CsSnX3 (X = cl, I), and SrBO3 (B = rh, Ti). Appl. Sci. 11, 6862 (2021). https://doi.org/10.3390/app11156862 Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalyt. RSC Advances (RSC Publishing) , (n.d.). https://pubs.rsc.org/en/content/articlehtml/2013/ra/c3ra00006k. Accessed 13 Jan, 2023 Advances in designing perovskite catalysts. ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S1359028601000353. Accessed 13 Jan, 2023 D. Sannino, V. Vaiano, P. Ciambelli, L.A. Isupova, Structured catalysts for photo-Fenton oxidation of acetic acid. Catal. Today. 161, 255–259 (2011). https://doi.org/10.1016/j.cattod.2010.11.025 T.T.N. Phan, A.N. Nikoloski, P.A. Bahri, D. Li, Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light. J. Ind. Eng. Chem. 61, 53–64 (2018). https://doi.org/10.1016/j.jiec.2017.11.046 Imaging low-dimensional, nanostructures by very low voltage scanning electron microscopy: ultra-shallow topography and depth-tunable material contrast. Scientific Reports, (n.d.). https://www.nature.com/articles/s41598-019-52690-9. Accessed 20 Dec, 2023 T.H. Luu, X.D. Nguyen, T.M.H. Phan, S. Schulze, M. Hietschold, Synthesis and microstructure of La1–xCaxCoO3 nanoparticles and their catalytic activity for CO oxidation. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 025016 (2015). https://doi.org/10.1088/2043-6262/6/2/025016 S. Shenoy, E. Jang, T.J. Park, C.S. Gopinath, K. Sridharan, Cadmium sulfide nanostructures: influence of morphology on the photocatalytic degradation of erioglaucine and hydrogen generation. Appl. Surf. Sci. 483, 696–705 (2019). https://doi.org/10.1016/j.apsusc.2019.04.018 Z.R. Mohd. Shkir, K.V. Khan, T. Chandekar, A. Alshahrani, S. Kumar, AlFaify, A facile microwave synthesis of Cr-doped CdS QDs and investigation of their physical properties for optoelectronic applications. Appl. Nanosci. 10, 3973–3985 (2020). https://doi.org/10.1007/s13204-020-01505-9 K. Deka, M.P.C. Kalita, Structural phase controlled transition metal (Fe, Co, Ni, Mn) doping in CdS nanocrystals and their optical, magnetic and photocatalytic properties. J. Alloys Compd. 757, 209–220 (2018). https://doi.org/10.1016/j.jallcom.2018.04.323 M. Abdi, V. Mahdikhah, S. Sheibani, Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Opt. Mater. 102, 109803 (2020). https://doi.org/10.1016/j.optmat.2020.109803 K. Peng, L. Fu, H. Yang, J. Ouyang, Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 6, 19723 (2016). https://doi.org/10.1038/srep19723 B. Chong, L. Chen, D. Han, L. Wang, L. Feng, Q. Li, C. Li, W. Wang, CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion. Chin. J. Catal. 40, 959–968 (2019). https://doi.org/10.1016/S1872-2067(19)63355-3 K. Pradeev Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, R.F. Rafique, R. Thamiz Selvi, Rathina Bala, influence of mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13, 229 (2018). https://doi.org/10.1186/s11671-018-2643-x R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 32, 152–159 (2015). https://doi.org/10.1016/j.mssp.2015.01.013 Y. Ye, H. Yang, X. Wang, W. Feng, Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater. Sci. Semicond. Process. 82, 14–24 (2018). https://doi.org/10.1016/j.mssp.2018.03.033 S. Alkaykh, A. Mbarek, E.E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon. 6, e03663 (2020). https://doi.org/10.1016/j.heliyon.2020.e03663 X. Ge, G. Meng, B. Liu, Effects of molecular structure and existing forms on degradation of emerging contaminants by LaFeO3/NDA -99 - oxygen vacancy-driven photo-Fenton system. J. Clean. Prod. 396, 136483 (2023). https://doi.org/10.1016/j.jclepro.2023.136483 R. Dhinesh Kumar, R. Thangappan, R. Jayavel, Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. J. Phys. Chem. Solids. 101, 25–33 (2017). https://doi.org/10.1016/j.jpcs.2016.10.005 J. Luo, R. Li, Y. Chen, X. Zhou, X. Ning, L. Zhan, L. Ma, X. Xu, L. Xu, L. Zhang, Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation. Sep. Purif. Technol. 210, 417–430 (2019). https://doi.org/10.1016/j.seppur.2018.08.028 S. Kaushal, A. Kumar, H. Bains, P. Singh, Photocatalytic degradation of tetracycline antibiotic and organic dyes using biogenic synthesized CuO/Fe2O3 nanocomposite: pathways and mechanism insights. Environ. Sci. Pollut Res. 30, 1–13 (2022). https://doi.org/10.1007/s11356-022-24848-y Zhu, Oxygen evolution reaction over Fe site of BaZrxFe1-x-Google Scholar, (n.d.). https://scholar.google.com/scholar_lookup?title=Oxygen%20evolution%20reaction%20over%20Fe%20site%20of%20BaZrxFe1-xO3-%20perovskite%20oxides&publication_year=2017&author=K.%20Zhu&author=H.%20Liu&author=X.%20Li&author=Q.%20Li&author=J.%20Wang&author=X.%20Zhu&author=W.%20Yang. Accessed 20 Dec, 2023 Synthesis and electrocatalytic properties of LaFe1-xZnxO3 perovskites. J. Sol-Gel Science. Technol. (n.d.). https://link.springer.com/article/10.1007/s10971-020-05379-9. Accessed 20 Dec, 2023 E. Omari, M. Omari, D. Barkat, Oxygen evolution reaction over copper and zinc co-doped LaFeO3 perovskite oxides. Polyhedron. 156, 116–122 (2018). https://doi.org/10.1016/j.poly.2018.09.031 P. Anand, D. Prabu Jaihindh, W.-K. Chang, Y.-P. Fu, Tailoring the Ca-doped bismuth ferrite for electrochemical oxygen evolution reaction and photocatalytic activity. Appl. Surf. Sci. 540, 148387 (2021). https://doi.org/10.1016/j.apsusc.2020.148387 J. Gao, Y. Zhang, X. Wang, L. Jia, H. Jiang, M. Huang, A. Toghan, Nitrogen-doped Sr2Fe1.5Mo0.5O6-δ perovskite as an efficient and stable catalyst for hydrogen evolution reaction. Mater. Today Energy. 20, 100695 (2021). https://doi.org/10.1016/j.mtener.2021.100695 S.B. Karki, A.N. Andriotis, M. Menon, F. Ramezanipour, Bifunctional water-splitting electrocatalysis achieved by defect order in LaA2Fe3O8 (A = ca, Sr). ACS Appl. Energy Mater. 4, 12063–12066 (2021). https://doi.org/10.1021/acsaem.1c02028 M.S. Alom, F. Ramezanipour, Layered oxides SrLaFe1-xCoxO4-δ (x = 0–1) as bifunctional electrocatalysts for water-splitting. ChemCatChem 13, 3510–3516 (2021). https://doi.org/10.1002/cctc.202100867 D. Ji, C. Liu, Y. Yao, L. Luo, W. Wang, Z. Chen, Cerium substitution in LaCoO3 perovskite oxide as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. Nanoscale. 13, 9952–9959 (2021). https://doi.org/10.1039/D1NR00069A