Cobalt Oxide Nanoparticles Embedded in N‐Doped Porous Carbon as an Efficient Electrode for Supercapacitor

Energy Technology - Tập 7 Số 4 - 2019
Maiyong Zhu1, Qi Chen1, Jiarui Kan1, Jingjing Tang1, Wenjing Wei1, Jinkun Lin1, Songjun Li1
1School of Materials Science & Engineering Jiangsu University Zhenjiang Jiangsu Province 212013 P. R. China

Tóm tắt

Herein, a sequential pyrolysis and oxidation strategy is developed to prepare Co3O4 nanoparticles embedded in N‐doped porous carbon (Co3O4@N‐pC) using a bimetal zeolitic imidazolate framework (ZIF‐67@ZIF‐8) as precursors, which is first obtained via a simple wet‐chemical process. The electrochemical performances of Co3O4@N‐pC, ZIF‐67@ZIF‐8 precursors, and Co@N‐Pc intermediates (the direct pyrolysis products from ZIF‐67@ZIF‐8) are studied as supercapacitor electrodes in comparison. The results reveal that the specific capacitance of the optimized Co3O4@N‐pC electrode can reach up to 422.8 F g−1 at 1 A g−1 with a good rate capability (256 F g−1 at 5 A g−1) and excellent long‐term cycling stability (87.9% retention after 5000 cycles). Such performance is superior over ZIF‐67@ZIF‐8 precursors (232 F g−1 at 1 A g−1, 168.9 F g−1 at 5 A g−1, and 82.7% retained after 5000 cycles) and Co@N‐pC intermediates (218.4 F g−1 at 1 A g−1, 171 F g−1 at 5 A g−1, and 76.3% retained after 5000 cycles). The findings in this work are expected to provide a new avenue to explore other metal oxide/carbon materials for various applications.

Từ khóa


Tài liệu tham khảo

10.1021/acs.accounts.6b00460

10.1021/ar200306b

10.1126/science.1184126

10.1021/acsami.8b04733

10.1021/jp211339t

10.1021/acsami.7b10309

10.1016/j.electacta.2016.02.195

10.1016/j.electacta.2017.02.157

10.1021/nl300779a

10.1016/j.nanoen.2017.05.043

10.1016/j.electacta.2018.06.127

10.1016/j.electacta.2015.08.085

10.1021/acsami.8b04026

10.1016/j.electacta.2014.10.021

10.1021/am5044449

10.1021/acsami.5b05989

10.1021/am500464n

10.1016/j.electacta.2018.03.166

10.1002/smll.201702407

10.1016/j.elecom.2011.07.012

10.1002/smll.201303926

10.1021/acsami.5b02787

10.1021/acsami.5b04132

10.1021/am5062272

10.1021/am5009369

10.1039/C4RA13327G

10.1016/j.nanoen.2016.11.024

10.1016/j.jpcs.2018.10.012

10.1007/s10008-018-4101-1

10.1016/j.cej.2018.06.140

10.1016/j.nanoen.2016.11.055

10.1016/j.electacta.2014.11.150

10.1002/chem.201800217

10.1016/j.jallcom.2016.09.096

10.1016/j.matdes.2015.06.077

10.1002/smll.201800423

10.1021/jacs.7b01942

10.1002/aenm.201601979

10.1002/anie.201604802

10.1021/acscatal.7b03270

10.1021/acsami.7b10138

10.1039/C6CC00413J

10.1039/C4TA04277H

10.1021/jacs.7b00165

10.1021/jacs.7b12420

10.1021/jacs.6b02540

10.1021/am503037k

10.1021/ja511539a

10.1016/j.electacta.2014.12.035

10.1039/c3ta10909g

10.1166/jnn.2018.15289

10.1016/j.electacta.2014.01.161

10.1016/j.electacta.2017.10.160

10.1039/C6CE01921H

10.1016/j.electacta.2015.04.019

10.1016/j.compositesb.2017.03.025

10.1016/j.apsusc.2017.01.092

10.1021/acsami.5b02317

10.1038/srep02325

10.1016/j.matchemphys.2015.11.011

10.1002/celc.201700704

10.1002/ppsc.201500018

10.1016/j.matchemphys.2011.07.043