Cobalt‐Doping in Molybdenum‐Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution

Advanced Functional Materials - Tập 26 Số 31 - Trang 5590-5598 - 2016
Huanlei Lin1, Ning Liu1,2, Zhangping Shi3, Yulin Guo1, Yi Tang3, Qingsheng Gao1
1Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
2Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, China National Analytical Center, Guangzhou 510070, China
3Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 P.R. China

Tóm tắt

Efficient hydrogen evolution reaction (HER) over noble‐metal‐free electrocatalysts provides one of the most promising pathways to face the energy crisis. Herein, facile cobalt‐doping based on Co‐modified MoOx–amine precursors is developed to optimize the electrochemical HER over Mo2C nanowires. The effective Co‐doping into Mo2C crystal structure increases the electron density around Fermi level, resulting in the reduced strength of Mo–H for facilitated HER kinetics. As expected, the Co‐Mo2C nanowires with an optimal Co/Mo ratio of 0.020 display a low overpotential (η10 = 140 and 118 mV for reaching a current density of –10 mA cm−2; η100 = 200 and 195 mV for reaching a current density of –100 mA cm−2), a small Tafel slope (39 and 44 mV dec−1), and a low onset overpotential (40 and 25 mV) in 0.5 m H2SO4 and 1.0 m KOH, respectively. This work highlights a feasible strategy to explore efficient electrocatalysts via engineering on composition and nanostructure.

Từ khóa


Tài liệu tham khảo

10.1038/35104599

10.1038/nchem.141

10.1063/1.1878333

10.1021/cr100246c

10.1039/C3CS60468C

10.1039/C4EE01760A

10.1039/C4CS00448E

10.1039/C5TA02974K

10.1002/adma.201502696

10.1002/cctc.201500396

10.1021/acs.jpclett.5b00306

10.1002/aenm.201500985

10.1002/advs.201500286

10.1021/cs500056u

10.1039/C4NR05035E

10.1002/anie.201402998

10.1039/C5TA01296A

10.1039/c3cc44076a

10.1002/anie.201508715

10.1021/ja5114529

10.1021/jacs.5b01072

10.1039/C3EE42441C

10.1039/C5TA00139K

10.1038/ncomms7512

10.1002/anie.201207111

10.1021/jacs.5b07924

10.1002/adfm.201403633

10.1038/nmat1752

10.1039/c0cc01430c

10.1016/j.ijhydene.2013.09.150

10.1016/j.apcata.2006.10.013

10.1021/jp501021t

10.1016/j.apcata.2012.02.041

10.1021/acs.chemmater.5b00621

10.1039/C4TA05686H

10.1039/c6sc00077k

10.1016/j.jallcom.2015.09.166

10.1002/anie.201506727

10.1039/b921001f

Speight J. G., 2005, Lange's Handbook of Chemistry

10.1021/acsami.5b08103

10.1016/j.jpowsour.2014.11.039

10.1039/c6ta01900e

10.1149/1.3385391

10.1021/cs500923c

10.1038/ncomms8493

10.1002/anie.201504376

10.1039/C1SC00117E

10.1039/c2ee23891h

10.1016/j.ijhydene.2013.08.053

10.1016/j.ijhydene.2013.08.054

10.1002/celc.201402041

10.1016/j.jpowsour.2015.07.016

10.1039/C4TA06706A

10.1039/C5CC01240F

10.1021/jacs.5b09021

10.1002/anie.201307527