Đánh giá độ tập trung của kênh màu đồng trục để ước lượng chiều cao khoảng cách trong quy trình sản xuất bổ sung bằng phương pháp lắng đọng năng lượng định hướng

Callan Herberger1, Lauren Heinrich2, Erik LaNeave1, Brian Post2, Kenton B. Fillingim2, Eric MacDonald2,1, Thomas Feldhausen2, James Haley2
1The University of Texas at El Paso, El Paso, USA
2Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, USA

Tóm tắt

Quy trình lắng đọng năng lượng định hướng (DED) là một quy trình sản xuất bổ sung đang được ngành công nghiệp áp dụng nhanh chóng và phù hợp với việc chế tạo các thành phần phức tạp từ nhiều loại hợp kim kim loại khác nhau. Trong hệ thống phủ laser như DED, bột được thổi vào dòng khí tới một bề mặt kim loại cùng với laser cần thiết để lắng đọng kim loại nóng chảy với sự kiểm soát không gian 3D. Độ tập trung của cả laser và dòng bột là rất quan trọng, và việc lắng đọng tốt nhất xảy ra tại một chiều cao khoảng cách đã được xác định trước giữa bề mặt xây dựng và đầu in. Thông thường, không có hệ thống giám sát khoảng cách này được triển khai trong các hệ thống DED thương mại. Do khả năng xây dựng quá mức hoặc không đủ, chiều cao khoảng cách thường thay đổi theo thời gian nhưng có xu hướng tự điều chỉnh. Tuy nhiên, cần có những phương pháp rẻ tiền và ít xâm lấn để nhận diện khoảng cách tối ưu nhằm cung cấp kiểm soát thời gian thực để duy trì khoảng cách tối ưu. Công trình hiện tại khám phá việc định lượng độ tập trung của ba kênh màu của một camera đồng trục để xác định chiều cao khoảng cách. Một thí nghiệm đã được thực hiện trong đó một bức tường 254 mm được xây dựng và chiều cao khoảng cách, ban đầu là 5,0 mm dưới vị trí tối ưu, sau đó được cố ý tăng lên mỗi 25,4 mm chiều dài tường với một lượng 1,0 mm tới vị trí cuối cùng 7,0 mm trên vị trí tối ưu. Thị giác máy tính được chứng minh là có thể giám sát lượng tập trung trong mỗi dải màu và ước lượng khoảng cách lắng đọng. Một phản hồi có thể được tính toán trong thời gian dưới 40 ms bằng phần cứng đơn giản và có thể hoạt động trong hầu hết các hệ thống DED dựa trên laser.

Từ khóa


Tài liệu tham khảo

Dávila JL, Neto PI, Noritomi PY et al (2020) Hybrid manufacturing: a review of the synergy between directed energy deposition and subtractive processes. Int J Adv Manuf Technol 110:3377–3390. https://doi.org/10.1007/s00170-020-06062-7 Lorenz KA, Jones JB, Wimpenny DI, Jackson MR (2015) A review of hybrid manufacturing. In: Solid freeform fabrication conference proceedings. sffsymposium.engr.utexas.edu, pp 96–108 Zhu Z, Dhokia VG, Nassehi A (2013) A review of hybrid manufacturing processes—state of the art and future perspectives. Integr Manuf 26:596–615 Sealy MP, Madireddy G, Williams RE et al (2018) Hybrid processes in additive manufacturing. J Manuf Sci Eng 140:060801. https://doi.org/10.1115/1.4038644 Gibson I, Rosen D, Stucker B (2015) Directed energy deposition processes. In: Gibson I, Rosen D, Stucker B (eds) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer, New York, pp 245–268 Manogharan G, Wysk R, Harrysson O, Aman R (2015) AIMS—a metal additive-hybrid manufacturing system: system architecture and attributes. Proc Manuf 1:273–286 Ahn D-G (2021) Directed energy deposition (DED) process: state of the art. Int J Precis Eng Manuf Green Technol 8:703–742. https://doi.org/10.1007/s40684-020-00302-7 Alammar A, Kois JC, Revilla-León M, Att W (2022) Additive manufacturing technologies: current status and future perspectives. J Prosthodont 31:4–12. https://doi.org/10.1111/jopr.13477 Feldhausen T, Heinrich L, Saleeby K et al (2022) Review of computer-aided manufacturing (CAM) strategies for hybrid directed energy deposition. Addit Manuf 56:102900. https://doi.org/10.1016/j.addma.2022.102900 Feenstra DR, Banerjee R, Fraser HL et al (2021) Critical review of the state of the art in multi-material fabrication via directed energy deposition. Curr Opin Solid State Mater Sci 25:100924. https://doi.org/10.1016/j.cossms.2021.100924 Griffith ML, Harwell LD, Romero JT (1997) Multi-material processing by LENS. 1997 International Ambriz S, Coronel J, Zinniel B et al (2017) Material handling and registration for an additive manufacturing-based hybrid system. J Manuf Syst 45:17–27 Juhasz M, Tiedemann R, Dumstorff G et al (2020) Hybrid directed energy deposition for fabricating metal structures with embedded sensors. Addit Manuf 35:101397. https://doi.org/10.1016/j.addma.2020.101397 Li X, Golnas A, Prinz FB (2000) Shape deposition manufacturing of smart metallic structures with embedded sensors. In: Smart structures and materials Haley JC, Zheng B, Bertoli US et al (2019) Working distance passive stability in laser directed energy deposition additive manufacturing. Mater Des 161:86–94. https://doi.org/10.1016/j.matdes.2018.11.021 Luo M, Shin YC (2015) Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding. Opt Lasers Eng 64:59–70. https://doi.org/10.1016/j.optlaseng.2014.07.004 You D, Gao X, Katayama S (2013) Multiple-optics sensing of high-brightness disk laser welding process. NDT E Int 60:32–39 Gibson BT, Bandari YK, Richardson BS, et al (2019) Melt pool monitoring for control and data analytics in large-scale metal additive manufacturing. In: 2019 International Gibson BT, Bandari YK, Richardson BS et al (2020) Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V. Addit Manuf 32:100993. https://doi.org/10.1016/j.addma.2019.100993 Ertay DS, Naiel MA, Vlasea M, Fieguth P (2021) Process performance evaluation and classification via in-situ melt pool monitoring in directed energy deposition. CIRP J Manuf Sci Technol 35:298–314. https://doi.org/10.1016/j.cirpj.2021.06.015 Walker TR, Bennett CJ, Lee TL, Clare AT (2020) A novel numerical method to predict the transient track geometry and thermomechanical effects through in-situ modification of the process parameters in Direct Energy Deposition. Finite Elem Anal Des 169:103347. https://doi.org/10.1016/j.finel.2019.103347 Mondal S, Gwynn D, Ray A, Basak A (2020) Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals 10:683 Mirkoohi E, Sievers DE, Garmestani H et al (2019) Three-dimensional semi-elliptical modeling of melt pool geometry considering hatch spacing and time spacing in metal additive manufacturing. J Manuf Process 45:532–543. https://doi.org/10.1016/j.jmapro.2019.07.028 Hofman JT, Pathiraj B, van Dijk J et al (2012) A camera-based feedback control strategy for the laser cladding process. J Mater Process Technol 212:2455–2462 Doubenskaia M, Pavlov M, Grigoriev S, Smurov I (2013) Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf Coat Technol 220:244–247. https://doi.org/10.1016/j.surfcoat.2012.10.044 Sampson R, Lancaster R, Sutcliffe M et al (2020) An improved methodology of melt pool monitoring of direct energy deposition processes. Opt Laser Technol 127:106194. https://doi.org/10.1016/j.optlastec.2020.106194 Staudt T, Eschner E, Schmidt M (2019) Temperature determination in laser welding based upon a hyperspectral imaging technique. CIRP Ann Manuf Technol 68:225–228. https://doi.org/10.1016/j.cirp.2019.04.117 Xia C, Pan Z, Li Y et al (2022) Vision-based melt pool monitoring for wire-arc additive manufacturing using deep learning method. Int J Adv Manuf Technol 120:551–562. https://doi.org/10.1007/s00170-022-08811-2 Mi J, Zhang Y, Li H et al (2021) In-situ monitoring laser based directed energy deposition process with deep convolutional neural network. J Intell Manuf. https://doi.org/10.1007/s10845-021-01820-0 Esfahani MN, Bappy MM, Bian L, Tian W (2022) In-situ layer-wise certification for direct laser deposition processes based on thermal image series analysis. J Manuf Process 75:895–902. https://doi.org/10.1016/j.jmapro.2021.12.041 Khanzadeh M, Chowdhury S, Tschopp MA et al (2019) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions 51:437–455. https://doi.org/10.1080/24725854.2017.1417656 Wolff SJ, Wang H, Gould B et al (2021) In situ X-ray imaging of pore formation mechanisms and dynamics in laser powder-blown directed energy deposition additive manufacturing. Int J Mach Tools Manuf 166:103743. https://doi.org/10.1016/j.ijmachtools.2021.103743 Simonds BJ, Tanner J, Artusio-Glimpse A et al (2021) The causal relationship between melt pool geometry and energy absorption measured in real time during laser-based manufacturing. Appl Mater Today 23:101049. https://doi.org/10.1016/j.apmt.2021.101049 Krotkov E (1988) Focusing. Int J Comput Vis 1:223–237 Lee S-Y, Kumar Y, Cho J-M et al (2008) Enhanced autofocus algorithm using robust focus measure and fuzzy reasoning. IEEE Trans Circuits Syst Video Technol 18:1237–1246 Peddigari V, Gamadia M, Kehtarnavaz N (2005) Real-time implementation issues in passive automatic focusing for digital still cameras. https://library.imaging.org/admin/apis/public/api/ist/website/downloadArticle/jist/49/2/art00003. Accessed 11 Mar 2023 Pertuz S, Puig D, Garcia MA (2013) Analysis of focus measure operators for shape-from-focus. Pattern Recognit 46:1415–1432. https://doi.org/10.1016/j.patcog.2012.11.011 Sun Y, Duthaler S, Nelson BJ (2004) Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc Res Tech 65:139–149. https://doi.org/10.1002/jemt.20118 Herrmann C, Bowen RS, Wadhwa N, et al (2020) Learning to Autofocus. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Wang D, Song C, Yang Y, Bai Y (2016) Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater Des 100:291–299. https://doi.org/10.1016/j.matdes.2016.03.111 Kono D, Yamaguchi H, Oda Y, Sakai T (2020) Stabilization of standoff distance by efficient and adaptive updating of layer height command in directed energy deposition. CIRP J Manuf Sci Technol 31:244–250. https://doi.org/10.1016/j.cirpj.2020.05.015 Asselin M, Toyserkani E, Iravani-Tabrizipour M, Khajepour A (2005) Development of trinocular CCD-based optical detector for real-time monitoring of laser cladding. In: IEEE International Conference Mechatronics and Automation Iravani-Tabrizipour M, Toyserkani E (2007) An image-based feature tracking algorithm for real-time measurement of clad height. Mach Vis Appl 18:343–354. https://doi.org/10.1007/s00138-006-0066-7 Borovkov H, de la Yedra AG, Zurutuza X et al (2021) In-line height measurement technique for directed energy deposition processes. J Mater Process Manuf Sci 5:85. https://doi.org/10.3390/jmmp5030085 Song L, Bagavath-Singh V, Dutta B, Mazumder J (2012) Control of melt pool temperature and deposition height during direct metal deposition process. Int J Adv Manuf Technol 58:247–256. https://doi.org/10.1007/s00170-011-3395-2 Biegler M, Graf B, Rethmeier M (2018) In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations. Addit Manuf 20:101–110. https://doi.org/10.1016/j.addma.2017.12.007 Garmendia I, Pujana J, Lamikiz A et al (2019) Structured light-based height control for laser metal deposition. J Manuf Process 42:20–27. https://doi.org/10.1016/j.jmapro.2019.04.018 Heralić A, Christiansson A-K, Lennartson B (2012) Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt Lasers Eng 50:1230–1241. https://doi.org/10.1016/j.optlaseng.2012.03.016 Heigel JC, Michaleris P, Palmer TA (2015) In situ monitoring and characterization of distortion during laser cladding of Inconel® 625. J Mater Process Technol 220:135–145 Tang L, Ruan J, Sparks TE et al (2009) Layer-to-layer height control of laser metal deposition processes. In: 2009 American Control Conference Donadello S, Motta M, Demir AG, Previtali B (2019) Monitoring of laser metal deposition height by means of coaxial laser triangulation. Opt Lasers Eng 112:136–144. https://doi.org/10.1016/j.optlaseng.2018.09.012 Hand DP, Fox MDT, Haran FM et al (2000) Optical focus control system for laser welding and direct casting. Opt Lasers Eng 34:415–427 Alexander Z, DeVol N, Emig M et al (2022) Support vector machines for classification of direct energy deposition standoff distance for improved process control. Volume 1: Additive Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation; Nano/Micro/Meso Manufacturing