Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018

Scientific data - Tập 7 Số 1
Jérôme Benveniste1, Florence Birol2, Francisco M. Calafat3, Anny Cazenave2, H. B. Dieng2, Yvan Gouzènes2, Jean François Legeais4, Fabien Léger2, Fernando Niño2, Marcello Passaro5, Christian Schwatke5, Andrew Shaw6
1ESA ESRIN, Frascati, Italy
2LEGOS, Toulouse, France
3NOC, Liverpool, UK
4CLS, Ramonville St Agne, France
5TUM, Munich, Germany
6SKYMAT, Southampton, UK

Tóm tắt

Abstract

Climate-related sea level changes in the world coastal zones result from the superposition of the global mean rise due to ocean warming and land ice melt, regional changes caused by non-uniform ocean thermal expansion and salinity changes, and by the solid Earth response to current water mass redistribution and associated gravity change, plus small-scale coastal processes (e.g., shelf currents, wind & waves changes, fresh water input from rivers, etc.). So far, satellite altimetry has provided global gridded sea level time series up to 10–15 km to the coast only, preventing estimation of sea level changes very close to the coast. Here we present a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset at monthly interval, together with associated sea level trends, at 429 coastal sites in six regions (Northeast Atlantic, Mediterranean Sea, Western Africa, North Indian Ocean, Southeast Asia and Australia). This new coastal sea level product is based on complete reprocessing of raw radar altimetry waveforms from the Jason-1, Jason-2 and Jason-3 missions.

Từ khóa


Tài liệu tham khảo

Ablain, M. et al. Altimetry-based sea level, global and regional scales. Surveys in Geophysics 38, 7–31, https://doi.org/10.1007/s10712-016-9389-8 (2017).

Legeais, J. F. et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 10, 281–301, https://doi.org/10.5194/essd-10-281-2018 (2018).

WCRP Global Sea Level Budget Group. Global sea level budget, 1993-present. Earth Syst. Sci. Data 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018 (2018).

Nerem, R. S. et al. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences 115(9), 2022–2025, https://doi.org/10.1073/pnas.1717312115 (2018).

Stammer D., Cazenave A., Ponte R. M. & Tamisiea M. E. Causes for contemporary regional sea level changes. Annual Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-121211-172406 (2013).

Cazenave, A., Palanisamy, H. & Ablain M. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Advances in Space Research, https://doi.org/10.1016/j.asr.2018.07.017 (2018).

Birol, F. et al. Coastal applications from nadir altimetry: example of the X-TRACK regional products. Advances in Space Research 59, 936–953, https://doi.org/10.1016/j.asr.2016.11.005 (2017).

Xu, X. Y., Birol, F. & Cazenave, A. Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry. Remote Sens. 10, 282, https://doi.org/10.3390/rs10020282 (2018).

Ray, R. D., Egbert, G. D. & Erofeeva, S. Y. Tide predictions in shelf and coastal waters: Status and prospects. In Coastal Altimetry (eds. Vignudelli, S., Kostianoy, A. G., Cipollini, P. & Benveniste, J.), Springer, Berlin Heidelberg, 191–216, https://doi.org/10.1007/978-3-642-12796-0_8 (2011).

Vignudelli, S. et al. Satellite altimetry measurements of sea level in the coastal zone. Surveys in Geophysics https://doi.org/10.1007/s10712-019-09569-1 (2019).

Horwath, M. et al. ESA Climate Change Initiative (CCI) Sea Level Budget Closure (SLBC_cci) Sea Level Budget Closure Assessment Report D3.1. Version 2 (2019).

Hamlington, B. et al. Understanding of Contemporary Regional Sea‐level Change and the Implications for the Future. Review of Geophysics https://doi.org/10.1029/2019RG000672 (2020).

Durand, F. et al. Impact of continental freshwater runoff on coastal sea level, Surveys in Geophysics, 40:1437–1466, https://doi.org/10.1007/s10712-019-09536-w (2019).

Woodworth P. et al. Forcing Factors Causing Sea Level Changes at the Coast, Surveys in Geophysics, https://doi.org/10.1007/s10712-019-09531-1 (2019).

Cipollini, P. et al. Satellite altimetry in coastal regions. In ‘Satellite altimetry over the oceans and land surfaces’, Stammer & Cazenave Edts, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, pp 343-373, https://doi.org/10.1201/9781315151779-11 (2018).

Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G. D. & Snaith, H. M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment 145, 173–189, https://doi.org/10.1016/j.rse.2014.02.008 (2014).

Sandwell, D. T. & Smith, W. H. Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geophysical Journal International 163(1), 79–89, https://doi.org/10.1111/j.1365-246X.2005.02724.x (2005).

Tran, N., Labroue, S., Philipps, S., Bronner, E. & Picot, N. Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar. Geod. 33, 348–362, https://doi.org/10.1080/01490419.2010.487788 (2010).

Passaro, M., Nadzir, Z. A. & Quartly, G. D. Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections. Remote Sensing of Environment 218, 245–254, https://doi.org/10.1016/j.rse.2018.09.007 (2018).

Quartly, G. D., Smith, W. H. & Passaro, M. Removing Intra-1-Hz Covariant Error to Improve Altimetric Profiles of σ0 and Sea Surface Height. IEEE Transactions on Geoscience and Remote Sensing 57(6), 3741–3752, https://doi.org/10.1109/TGRS.2018.2886998 (2019).

Passaro, M., Cipollini, P. & Benveniste, J. Annual sea level variability of the coastal ocean: The Baltic Sea‐North Sea transition zone. Journal of Geophysical Research: Oceans 120(4), 3061–3078, https://doi.org/10.1002/2014JC010510 (2015).

Chereskin, T. K., Rocha, C. B., Gille, S. T., Menemenlis, D. & Passaro, M. Characterizing the transition from balanced to unbalanced motions in the southern California Current. Journal of Geophysical Research: Oceans 124(3), 2088–2109, https://doi.org/10.1029/2018JC014583 (2019).

Gómez-Enri, J. et al. Wind-induced cross-strait sea level variability in the Strait of Gibraltar from coastal altimetry and in-situ measurements. Remote Sensing of Environment 221, 596–608, https://doi.org/10.1016/j.rse.2018.11.042 (2019).

Piccioni, G. et al. Coastal improvements for tide models: the impact of ALES retracker. Remote Sensing 10(5), 700, https://doi.org/10.3390/rs10050700 (2018).

Vignudelli, S. et al. Improved satellite altimetry in coastal systems: Case study of the Corsica Channel (Mediterranean Sea). Geophys. Res. Let., 32, L07608, 1029/2005GL22602 (2005).

Roblou L. et al. Post-processing altimiter data toward coastal applications and integration into coastal models. Chapter 9 In: S. Vignudelli, A.G. Kostianoy, P. Cipollini, J. Benveniste (eds.), Coastal Altimetry, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_9 (2011).

Fernandes, M. J., Lázaro, C., Ablain, M. & Pires, N. Improved Wet Path Delays for All ESA and Reference Altimetric Missions. Remote Sensing of Environment 169, 50–74, https://doi.org/10.1016/j.rse.2015.07.023 (2015).

Vignudelli S., A. G. Kostianoy, P. Cipollini, and J. Benveniste (Eds.), Coastal Altimetry, Springer, Berlin, https://doi.org/10.1007/978-3-642-12796-0 (2011).

Jebri, F., Birol, F., Zakardjian, B., Bouffard, J. & Sammari, C. Exploiting coastal altimetry to improve the surface circulation scheme over the central Mediterranean Sea. J. Geophys. Res. Oceans 121, 4888–4909, https://doi.org/10.1002/2016JC011961 (2016).

Léger, F. et al. X-Track/Ales Regional Altimeter Product for Coastal Application: Toward a New Multi-Mission Altimetry Product at High Resolution, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp. 8271-8274, https://doi.org/10.1109/IGARSS.2019.8900422 (2019).

Marti, F. et al. Altimetry-based sea level trends along the coasts of western Africa, Adv. in Space Res., published online 24 May2019, https://doi.org/10.1016/j.asr.2019.05.033 (2019).

Sea Level CCI+ Team. Sea Level CCI+ ECV dataset: SLCCI XTRACK/ALES Sea Level Anomalies (SLA) v1.1. European Space Agency, https://doi.org/10.5270/esa-sl_cci-xtrack_ales_sla-200206_201805-v1.1-202005 (2020).

Benveniste, J. et al. Coastal Sea Level Product 1. Figshare https://doi.org/10.6084/m9.figshare.13019813 (2020).

The Climate Change Coastal Sea Level Team. A database of coastal sea level anomalies and associated trends from Jason satellite altimetry from 2002 to 2018. SEANOE, https://doi.org/10.17882/74354 (2020).

Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1 (2013).

Chib, S. Bayes regression with autoregressive errors. A Gibbs sampling approach. J. Econometrics 58, 275–294, https://doi.org/10.1016/0304-4076(93)90046-8 (1993).

Rasmussen, C. E. & Williams C. K. I. Gaussian Processes for Machine Learning (MIT Press, Cambridge, MA, 2006, ISBN 0-262-18253-X) (2006).

Cartwright, D. E. & Taylor, R. J. New computation of the tide-generating potential. Geophysical Journal of the Royal Astronomical Society 23, 45–74, https://doi.org/10.1111/j.1365-246X.1971.tb01803.x (1971).

Cartwright, D. E. & Edden, A. C. Corrected Tables of Tidal Harmonics. Geophysical Journal of the Royal Astronomical Society 33, 253–264, https://doi.org/10.1111/j.1365-246X.1973.tb03420.x. (1973).

Wahr, J. M. Deformation induced by polar motion. J. Geophys. Res. 90(B11), 9363–9368, https://doi.org/10.1029/JB090iB11p09363 (2005).

Carrere, L. et al. FES2012: A new global tidal model taking taking advantage of nearly 20 years of altimetry,, in Proceedings of the “20 Years of Progress in Radar Altimetry” Symposium, Venice, Italy, 24–29 September 2012, Benveniste, J. and Morrow, R., Eds., ESA Special Publication SP-710, https://doi.org/10.5270/esa.sp-710.altimetry2012 (2012).

Carrere, L. & Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-Comparisons with observations. Geophys. Res. Lett. 30(6), 1275, https://doi.org/10.1029/2002GL016473 (2003).