Coarse-grained modelling out of equilibrium

Physics Reports - Tập 972 - Trang 1-45 - 2022
Tanja Schilling1
1Albert Ludwigs Universität Freiburg, Hermann Herder Str. 3, 79104 Freiburg, Germany

Tài liệu tham khảo

Berendsen, 2007 Fish, 2013 Hoekstra, 2014, Multiscale modelling and simulation: A position paper, Phil. Trans. R. Soc. A, 372, 10.1098/rsta.2013.0377 Weinan, 2011 Attinger, 2004 Peter, 2009, Multiscale simulation of soft matter systems–from the atomistic to the coarse-grained level and back, Soft Matter, 5, 4357, 10.1039/b912027k Ferreira, 2007 Einstein, 1905, Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten Teilchen, Ann. Phys., 322, 549, 10.1002/andp.19053220806 von Smoluchowski, 1906, Sur le chemin moyen parcouru par les molécules d’un gaz et sur son rapport avec la théorie de la diffusion, Bull. Int. L’Acad. Sci. Cracov., 3, 202 Langevin, 1908, Sur la théorie du mouvement brownien, C. R. L’Acad. Sci., 146, 530 Gillespie, 1996, The mathematics of Brownian motion and Johnson noise, Am. J. Phys., 64, 225, 10.1119/1.18210 Nakajima, 1958, On quantum theory of transport phenomena: Steady diffusion, Progr. Theor. Phys., 20, 948, 10.1143/PTP.20.948 Zwanzig, 1960, Ensemble method in the theory of irreversibility, J. Chem. Phys., 33, 1338, 10.1063/1.1731409 Mori, 1965, Transport, collective motion, and Brownian motion, Progr. Theoret. Phys., 33, 423, 10.1143/PTP.33.423 Zwanzig, 2001 Grabert, 1982 Te Vrugt, 2019, Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians, Phys. Rev. E, 99, 10.1103/PhysRevE.99.062118 Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133 Parr, 1989 Hansen, 1990 Bogoliubov, 1946, Kinetic equations, J. Phys. USSR, 10, 265 Born, 1946, A general kinetic theory of liquids I. the molecular distribution functions, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci., 188, 10 Kirkwood, 1946, The statistical mechanical theory of transport processes I. General theory, J. Chem. Phys., 14, 180, 10.1063/1.1724117 Yvon, 1935 Ornstein, 1914, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Acad. Sci. Amsterdam, 17, 793 Tricomi, 1985 Zwanzig, 1961, Memory effects in irreversible thermodynamics, Phys. Rev., 124, 983, 10.1103/PhysRev.124.983 Onsager, 1931, Reciprocal relations in irreversible processes I., Phys. Rev., 37, 405, 10.1103/PhysRev.37.405 Onsager, 1931, Reciprocal relations in irreversible processes II, Phys. Rev., 38, 2265, 10.1103/PhysRev.38.2265 Meyer, 2019, On the dynamics of reaction coordinates in classical, time-dependent, many-body processes, J. Chem. Phys., 150, 10.1063/1.5090450 Øksendal, 2013 Van Kampen, 1992 Padgett, 1972, On a stochastic integro-differential equation of Volterra type, SIAM J. Appl. Math., 23, 499, 10.1137/0123054 Berger, 1980, Volterra equations with Itō integrals—I, J. Integr. Equ., 187 Chorin, 2002, Optimal prediction with memory, Physica D, 166, 239, 10.1016/S0167-2789(02)00446-3 te Vrugt, 2020, Projection operators in statistical mechanics: A pedagogical approach, Eur. J. Phys., 41, 10.1088/1361-6404/ab8e28 Hijon, 2010, Mori-Zwanzig formalism as a practical computational tool, Faraday Discuss., 144, 301, 10.1039/B902479B Izvekov, 2017, Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function, J. Chem. Phys., 146, 10.1063/1.4978572 Zwanzig, 1973, Nonlinear generalized Langevin equations, J. Stat. Phys., 9, 215, 10.1007/BF01008729 Cortes, 1985, On the generalized langevin equation: Classical and quantum mechanical, J. Chem. Phys., 82, 2708, 10.1063/1.448268 Cui, 2018, Generalized Langevin equation and fluctuation–dissipation theorem for particle-bath systems in external oscillating fields, Phys. Rev. E, 97, 10.1103/PhysRevE.97.060102 Snook, 2006 Hernandez, 1999, Stochastic dynamics in irreversible nonequilibrium environments. 2. A model for thermosetting polymerization, J. Phys. Chem. B, 103, 1070, 10.1021/jp9836269 Bhadauria, 2015, Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water, J. Chem. Phys., 143, 10.1063/1.4934678 Lei, 2016, Data-driven parameterization of the generalized langevin equation, Proc. Natl. Acad. Sci., 113, 14183, 10.1073/pnas.1609587113 Daldrop, 2017, External potential modifies friction of molecular solutes in water, Phys. Rev. X, 7 Wang, 2020, Data-driven coarse-grained modeling of polymers in solution with structural and dynamic properties conserved, Soft Matter, 16, 8330, 10.1039/D0SM01019G M. Ozmaian, D.E. Makarov, Transition path dynamics in the binding of intrinsically disordered proteins: A simulation study, J. Chem. Phys. 151 (23) http://dx.doi.org/10.1063/1.5129150. Grogan, 2020, Data-driven molecular modeling with the generalized Langevin equation, J. Comput. Phys., 418, 10.1016/j.jcp.2020.109633 Glatzel, 2021, The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse-grained observables, Europhys. Lett., 136, 36001, 10.1209/0295-5075/ac35ba Kawai, 2011, Derivation of the generalized Langevin equation in nonstationary environments, J. Chem. Phys., 134, 10.1063/1.3561065 Izvekov, 2013, Microscopic derivation of particle-based coarse-grained dynamics, J. Chem. Phys., 138, 10.1063/1.4795091 Li, 2017, Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Application to polymer melts, J. Chem. Phys., 146, 10.1063/1.4973347 Han, 2018, Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models, J. Chem. Phys., 149, 10.1063/1.5039738 Lee, 2019, The multi-dimensional generalized langevin equation for conformational motion of proteins, J. Chem. Phys., 150, 10.1063/1.5055573 Lange, 2006, Collective langevin dynamics of conformational motions in proteins, J. Chem. Phys., 124, 10.1063/1.2199530 Kinjo, 2007, Equation of motion for coarse-grained simulation based on microscopic description, Phys. Rev. E, 75, 10.1103/PhysRevE.75.051109 Chorin, 2000, Optimal prediction and the Mori–Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci., 97, 2968, 10.1073/pnas.97.7.2968 Nordholm, 1972 Nordholm, 1975, A systematic derivation of exact generalized Brownian motion theory, J. Stat. Phys., 13, 347, 10.1007/BF01012013 Boettinger, 2002, Phase-field simulation of solidification, Ann. Rev. Mater. Res., 32, 163, 10.1146/annurev.matsci.32.101901.155803 Steinbach, 2009, Phase-field models in materials science, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/7/073001 Español, 2009, Derivation of dynamical density functional theory using the projection operator technique, J. Chem. Phys., 131, 10.1063/1.3266943 Español, 2002, Coarse graining from coarse-grained descriptions, Phil. Trans. R. Soc. A, 360, 383, 10.1098/rsta.2001.0935 Kranz, 2013, Glass transition in driven granular fluids: A mode-coupling approach, Phys. Rev. E, 87, 10.1103/PhysRevE.87.022207 Glatzel, 2021, Comments on the validity of the non-stationary generalized langevin equation as a coarse-grained evolution equation for microscopic stochastic dynamics, J. Chem. Phys., 154, 10.1063/5.0049693 Frenkel, 2001 Allen, 2017 Chen, 2011, Assessment of atomistic coarse-graining methods, Internat. J. Engrg. Sci., 49, 1337, 10.1016/j.ijengsci.2011.03.018 Potestio, 2014, Computer simulations of soft matter: Linking the scales, Entropy, 16, 4199, 10.3390/e16084199 Ingólfsson, 2014, The power of coarse graining in biomolecular simulations, WIREs Comput. Mol. Sci., 4, 225, 10.1002/wcms.1169 Gartner, 2019, Modeling and simulations of polymers: A roadmap, Macromolecules, 52, 755, 10.1021/acs.macromol.8b01836 Chaimovich, 2011, Coarse-graining errors and numerical optimization using a relative entropy framework, J. Chem. Phys., 134, 10.1063/1.3557038 Rühle, 2009, Versatile object-oriented toolkit for coarse-graining applications, J. Chem. Theory Comput., 5, 3211, 10.1021/ct900369w Praprotnik, 2008, Multiscale simulation of soft matter: From scale bridging to adaptive resolution, Ann. Rev. Phys. Chem., 59, 545, 10.1146/annurev.physchem.59.032607.093707 Ercolessi, 1994, Interatomic potentials from first-principles calculations: The force-matching method, Europhys. Lett., 26, 583, 10.1209/0295-5075/26/8/005 Lyubartsev, 1995, Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach, Phys. Rev. E, 52, 3730, 10.1103/PhysRevE.52.3730 Tschöp, 1998, Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates, Acta Polym., 49, 61, 10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V Reith, 2003, Deriving effective mesoscale potentials from atomistic simulations, J. Comput. Chem., 24, 1624, 10.1002/jcc.10307 Rosenberger, 2016, Comparison of iterative inverse coarse-graining methods, Eur. Phys. J. Spec. Top., 225, 1323, 10.1140/epjst/e2016-60120-1 Izvekov, 2005, A multiscale coarse-graining method for biomolecular systems, J. Phys. Chem. B, 109, 2469, 10.1021/jp044629q Lin, 2020, Structure and position-dependent properties of inhomogeneous suspensions of responsive colloids, Phys. Rev. E, 102, 10.1103/PhysRevE.102.042602 Nielsen, 2003, A coarse grain model for n-alkanes parameterized from surface tension data, J. Chem. Phys., 119, 7043, 10.1063/1.1607955 Marrink, 2007, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B, 111, 7812, 10.1021/jp071097f Shinoda, 2007, Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants, Mol. Simul., 33, 27, 10.1080/08927020601054050 Baron, 2007, Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models, ChemPhysChem, 8, 452, 10.1002/cphc.200600658 He, 2010, Exploring the utility of coarse-grained water models for computational studies of interfacial systems, Mol. Phys., 108, 2007, 10.1080/00268976.2010.503197 Ouldridge, 2011, Structural, mechanical and thermodynamic properties of a coarse-grained DNA model, J. Chem. Phys., 134, 10.1063/1.3552946 Glaser, 1997, Quantum chemistry based force fields for soft matter, Spectrochim. Acta A Mol. Biomol. Spectrosc., 53, 1325, 10.1016/S1386-1425(97)00034-6 Izvekov, 2004, Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching, J. Chem. Phys., 120, 10896, 10.1063/1.1739396 Lyubartsev, 2009, Hierarchical multiscale modelling scheme from first principles to mesoscale, J. Comput. Theor. Nanosci., 6, 951, 10.1166/jctn.2009.1130 Xu, 2018, Perspective: Ab initio force field methods derived from quantum mechanics, J. Chem. Phys., 148, 10.1063/1.5009551 Heinz, 2016, Simulations of inorganic-bioorganic interfaces to discover new materials: Insights, comparisons to experiment, challenges, and opportunities, Chem. Soc. Rev., 45, 412, 10.1039/C5CS00890E Shell, 2008, The relative entropy is fundamental to multiscale and inverse thermodynamic problems, J. Chem. Phys., 129, 10.1063/1.2992060 Rudzinski, 2011, Coarse-graining entropy, forces, and structures, J. Chem. Phys., 135, 10.1063/1.3663709 Groot, 1997, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys., 107, 4423, 10.1063/1.474784 Pivkin, 2011, Dissipative particle dynamics, Rev. Comput. Chem., 27, 85 Español, 2017, Perspective: Dissipative particle dynamics, J. Chem. Phys., 146, 10.1063/1.4979514 Holm, 2008 Brady, 1988, Stokesian dynamics, Annu. Rev. Fluid Mech., 20, 111, 10.1146/annurev.fl.20.010188.000551 Malevanets, 1999, Mesoscopic model for solvent dynamics, J. Chem. Phys., 110, 8605, 10.1063/1.478857 Gompper, 2009, Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, 1 Pooley, 2005, Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics, J. Phys. Chem. B, 109, 6505, 10.1021/jp046040x Succi, 2001 Dünweg, 2009, Lattice Boltzmann simulations of soft matter systems, 89 Papenkort, 2014, Channel flow of a tensorial shear-thinning maxwell model: Lattice Boltzmann simulations, J. Chem. Phys., 140, 10.1063/1.4872219 Papenkort, 2015, Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid, J. Chem. Phys., 143, 10.1063/1.4936358 Hoogerbrugge, 1992, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett., 19, 155, 10.1209/0295-5075/19/3/001 Tschöp, 1998, Simulation of polymer melts. II. From coarse-grained models back to atomistic description, Acta Polym., 49, 75, 10.1002/(SICI)1521-4044(199802)49:2/3<75::AID-APOL75>3.0.CO;2-5 Kotelyanskii, 1996, Building large amorphous polymer structures: Atomistic simulation of glassy polystyrene, Macromolecules, 29, 8497, 10.1021/ma960071b Hess, 2006, Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate, Soft Matter, 2, 409, 10.1039/B602076C Peter, 2008, Classical simulations from the atomistic to the mesoscale and back: Coarse graining an azobenzene liquid crystal, Soft Matter, 4, 859, 10.1039/b717324e Gopal, 2010, PRIMO/PRIMONA: a coarse-grained model for proteins and nucleic acids that preserves near-atomistic accuracy, Proteins, 78, 1266, 10.1002/prot.22645 Wassenaar, 2014, Going backward: A flexible geometric approach to reverse transformation from coarse grained to atomistic models, J. Chem. Theory Comput., 10, 676, 10.1021/ct400617g Rzepiela, 2010, Reconstruction of atomistic details from coarse-grained structures, J. Comput. Chem., 31, 1333, 10.1002/jcc.21415 Chen, 2009, Backmapping coarse-grained polymer models under sheared nonequilibrium conditions, Phys. Chem. Chem. Phys., 11, 1977, 10.1039/b817895j Peng, 2019, Backmapping from multiresolution coarse-grained models to atomic structures of large biomolecules by restrained molecular dynamics simulations using Bayesian inference, J. Chem. Theory Comput., 15, 3344, 10.1021/acs.jctc.9b00062 Li, 2020, Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach, J. Chem. Phys., 153, 10.1063/5.0012320 An, 2020, Machine learning approach for accurate backmapping of coarse-grained models to all-atom models, Chem. Commun., 56, 9312, 10.1039/D0CC02651D T. Bayes, LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S, Philos. Trans. R. Soc. Lond. 53 (1763) 370–418, http://dx.doi.org/10.1098/rstl.1763.0053. Praprotnik, 2005, Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly, J. Chem. Phys., 123, 10.1063/1.2132286 Praprotnik, 2007, Adaptive resolution simulation of liquid water, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/29/292201 Potestio, 2013, Hamiltonian adaptive resolution simulation for molecular liquids, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.108301 Rudd, 2000, Concurrent coupling of length scales in solid state systems, Phys. Status Solidi (B), 217, 251, 10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A Csányi, 2004, Learn on the fly: A hybrid classical and quantum-mechanical molecular dynamics simulation, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.175503 Lu, 2006, From electrons to finite elements: A concurrent multiscale approach for metals, Phys. Rev. B, 73, 10.1103/PhysRevB.73.024108 Kramers, 1940, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7, 284, 10.1016/S0031-8914(40)90098-2 Feller, 1957 Feller, 1971 Rohrdanz, 2013, Discovering mountain passes via torchlight: Methods for the definition of reaction coordinates and pathways in complex macromolecular reactions, Ann. Rev. Phys. Chem., 64, 295, 10.1146/annurev-physchem-040412-110006 Bowman, 2013 Prinz, 2011, Markov models of molecular kinetics: Generation and validation, J. Chem. Phys., 134, 10.1063/1.3565032 Dill, 1997, From Levinthal to pathways to funnels, Nat. Struct. Biol., 4, 10, 10.1038/nsb0197-10 Onuchic, 1997, Theory of protein folding: The energy landscape perspective, Ann. Rev. Phys. Chem., 48, 545, 10.1146/annurev.physchem.48.1.545 Wales, 2003 Hummer, 2005, Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations, New J. Phys., 7, 34, 10.1088/1367-2630/7/1/034 Sittel, 2018, Perspective: Identification of collective variables and metastable states of protein dynamics, J. Chem. Phys., 149, 10.1063/1.5049637 Molgedey, 1994, Separation of a mixture of independent signals using time delayed correlations, Phys. Rev. Lett., 72, 3634, 10.1103/PhysRevLett.72.3634 Pérez-Hernández, 2013, Identification of slow molecular order parameters for Markov model construction, J. Chem. Phys., 139, 10.1063/1.4811489 Paul, 2019, Identification of kinetic order parameters for non-equilibrium dynamics, J. Chem. Phys., 150, 10.1063/1.5083627 Torrie, 1977, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys., 23, 187, 10.1016/0021-9991(77)90121-8 Landau, 2004, A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling, Amer. J. Phys., 72, 1294, 10.1119/1.1707017 Bolhuis, 2002, Transition path sampling: Throwing ropes over rough mountain passes, in the dark, Ann. Rev. Phys. Chem., 53, 291, 10.1146/annurev.physchem.53.082301.113146 P. Koltai, H. Wu, F. Noé, C. Schütte, Optimal data-driven estimation of generalized Markov state models for non-equilibrium dynamics, Computation 6 (1) http://dx.doi.org/10.3390/computation6010022. Noé, 2013, A variational approach to modeling slow processes in stochastic dynamical systems, Multiscale Model. Simul., 11, 635, 10.1137/110858616 McGibbon, 2015, Variational cross-validation of slow dynamical modes in molecular kinetics, J. Chem. Phys., 142, 10.1063/1.4916292 Wu, 2020, Variational approach for learning Markov processes from time series data, J. Nonlinear Sci., 30, 23, 10.1007/s00332-019-09567-y Nüske, 2014, Variational approach to molecular kinetics, J. Chem. Theory Comput., 10, 1739, 10.1021/ct4009156 Nüske, 2017, Markov State models from short non-equilibrium simulations—Analysis and correction of estimation bias, J. Chem. Phys., 146, 10.1063/1.4976518 Wan, 2020, Adaptive Markov state model estimation using short reseeding trajectories, J. Chem. Phys., 152, 10.1063/1.5142457 Berkowitz, 1981, Memory kernels from molecular dynamics, J. Chem. Phys., 75, 2462, 10.1063/1.442269 Straub, 1987, Calculation of dynamic friction on intramolecular degrees of freedom, J. Phys. Chem., 91, 4995, 10.1021/j100303a019 Shin, 2010, Brownian motion from molecular dynamics, Chem. Phys., 375, 316, 10.1016/j.chemphys.2010.05.019 Carof, 2014, Two algorithms to compute projected correlation functions in molecular dynamics simulations, J. Chem. Phys., 140, 10.1063/1.4868653 Torres-Carbajal, 2015, Brownian motion of a nano-colloidal particle: The role of the solvent, Phys. Chem. Chem. Phys., 17, 19557, 10.1039/C5CP02777B Brennan, 2018, Data-driven closures for stochastic dynamical systems, J. Comput. Phys., 372, 281, 10.1016/j.jcp.2018.06.038 B. Kowalik, J.O. Daldrop, J. Kappler, J.C.F. Schulz, A. Schlaich, R.R. Netz, Memory-kernel extraction for different molecular solutes in solvents of varying viscosity in confinement, Phys. Rev. E 100 (1) http://dx.doi.org/10.1103/PhysRevE.100.012126. Yamaguchi, 2002, Translational diffusion and reorientational relaxation of water analyzed by site–site generalized langevin theory, J. Chem. Phys., 116, 2502, 10.1063/1.1435569 Townsend, 2018, The intermediate scattering function for quasi-elastic scattering in the presence of memory friction, J. Phys. Commun., 2, 10.1088/2399-6528/aad221 Kneller, 2001, Computing memory functions from molecular dynamics simulations, J. Chem. Phys., 115, 11097, 10.1063/1.1421361 Satija, 2019, Generalized Langevin equation as a model for barrier crossing dynamics in biomolecular folding, J. Phys. Chem. B, 123, 802, 10.1021/acs.jpcb.8b11137 Gottwald, 2015, Parametrizing linear generalized langevin dynamics from explicit molecular dynamics simulations, J. Chem. Phys., 142, 10.1063/1.4922941 Fricks, 2009, Time-domain methods for diffusive transport in soft matter, SIAM J. Appl. Math., 69, 1277, 10.1137/070695186 Meyer, 2020, Non-Markovian out-of-equilibrium dynamics: A general numerical procedure to construct time-dependent memory kernels for coarse-grained observables, Europhys. Lett., 128, 40001, 10.1209/0295-5075/128/40001 Meyer, 2020, A numerical procedure to evaluate memory effects in non-equilibrium coarse-grained models, Adv. Theory Simul., 4 Zhu, 2020, Generalized Langevin equations for systems with local interactions, J. Stat. Phys., 1 Amati, 2019, Memory effects in the Fermi–pasta–Ulam model, J. Stat. Phys., 174, 219, 10.1007/s10955-018-2207-6 Ma, 2016, The derivation and approximation of coarse-grained dynamics from Langevin dynamics, J. Chem. Phys., 145, 10.1063/1.4967936 Grebenkov, 2011, Time-averaged quadratic functionals of a Gaussian process, Phys. Rev. E, 83, 10.1103/PhysRevE.83.061117 Lesnicki, 2016, Molecular hydrodynamics from memory kernels, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.147804 Viñales, 2020, Oscillations and negative velocity autocorrelation emerging from a Brownian particle model with hydrodynamic interactions, Phys. Rev. E, 101, 10.1103/PhysRevE.101.052140 Jung, 2017, Iterative reconstruction of memory kernels, J. Chem. Theory Comput., 13, 2481, 10.1021/acs.jctc.7b00274 V. Klippenstein, M. Tripathy, G. Jung, F. Schmid, N.F. van der Vegt, Introducing memory in coarse-grained molecular simulations, J. Phys. Chem. B http://dx.doi.org/10.1021/acs.jpcb.1c01120. Parish, 2017, A dynamic subgrid scale model for large eddy simulations based on the Mori–Zwanzig formalism, J. Comput. Phys., 349, 154, 10.1016/j.jcp.2017.07.053 Hald, 2007, Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions, Proc. Natl. Acad. Sci., 104, 6527, 10.1073/pnas.0700084104 Basu, 2018, Extrapolation to nonequilibrium from coarse-grained response theory, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.180604 Stinis, 2013, Renormalized reduced models for singular PDEs, Commun. Appl. Math. Comput. Sci., 8, 39, 10.2140/camcos.2013.8.39 Hauge, 1973, Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys., 7, 259, 10.1007/BF01030307 Ciccotti, 1980, Computer simulation of the generalized Brownian motion, Mol. Phys., 40, 141, 10.1080/00268978000101351 Berkowitz, 1983, Generalized langevin dynamics simulations with arbitrary time-dependent memory kernels, J. Chem. Phys., 78, 3256, 10.1063/1.445244 Xiang, 1991, Generalized Langevin equations for molecular dynamics in solution, J. Chem. Phys., 94, 4463, 10.1063/1.460602 Tuckerman, 1991, Stochastic molecular dynamics in systems with multiple time scales and memory friction, J. Chem. Phys., 95, 4389, 10.1063/1.461794 Guárdia, 1985, Generalized Langevin dynamics simulation of interacting particles, J. Chem. Phys., 83, 1917, 10.1063/1.449379 Smith, 1990, Generalized Brownian dynamics. I. Numerical integration of the generalized Langevin equation through autoregressive modeling of the memory function, J. Chem. Phys., 92, 1304, 10.1063/1.458140 Wan, 1998, Generalized Langevin dynamics simulation: Numerical integration and application of the generalized Langevin equation with an exponential model for the friction kernel, Mol. Phys., 93, 901, 10.1080/00268979809482276 Gordon, 2008, A generalized Langevin algorithm for studying permeation across biological ion channels, Mol. Phys., 106, 1353, 10.1080/00268970802169145 Baczewski, 2013, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys., 139, 10.1063/1.4815917 N. Bockius, J. Shea, G. Jung, F. Schmid, M. Hanke, Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations, J. Phys. Conden. Matter 33 (21) http://dx.doi.org/10.1088/1361-648X/abe6df. Stella, 2014, Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems, Phys. Rev. B, 89, 10.1103/PhysRevB.89.134303 Schaudinnus, 2015, Multidimensional Langevin modeling of nonoverdamped dynamics, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.050602 Yoshimoto, 2017, Construction of non-Markovian coarse-grained models employing the Mori–Zwanzig formalism and iterative Boltzmann inversion, J. Chem. Phys., 147, 10.1063/1.5009041 Lickert, 2020, Modeling non-Markovian data using Markov state and Langevin models, J. Chem. Phys., 153, 10.1063/5.0031979 Boltzmann, 1872, Weitere studien über das wärmegleichgewicht unter Gasmolekülen, 275 DiPerna, 1989, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 321, 10.2307/1971423 Bird, 1970, Direct simulation and the Boltzmann equation, Phys. Fluids, 13, 2676, 10.1063/1.1692849 Bird, 1976 Stefanov, 2019, On the basic concepts of the direct simulation Monte Carlo method, Phys. Fluids, 31, 10.1063/1.5099042 Zienkiewicz, 2006 Dimarco, 2018, An efficient numerical method for solving the Boltzmann equation in multidimensions, J. Comput. Phys., 353, 46, 10.1016/j.jcp.2017.10.010 Vlasov, 1968, The vibrational properties of an electron gas, Sov. Phys. Uspekhi, 10, 721, 10.1070/PU1968v010n06ABEH003709 Jackson, 1991 Chavanis, 2006, Hamiltonian And Brownian systems with long-range interactions: II. Kinetic equations and stability analysis, Physica A, 361, 81, 10.1016/j.physa.2005.06.088 Colonna, 2016, Boltzmann and Vlasov equations in plasma physics, 2053 Perepelkin, 2020, Exactly solvable models for the first Vlasov equation, Phys. Part. Nuclei, 51, 879, 10.1134/S1063779620050068 Mach, 2021, Accretion of the relativistic Vlasov gas onto a moving Schwarzschild black hole: Exact solutions, Phys. Rev. D, 103, 10.1103/PhysRevD.103.024044 Chavanis, 2006, Hamiltonian And Brownian systems with long-range interactions: I. Statistical equilibrium states and correlation functions, Phys. A Stat. Mech. Appl., 361, 55, 10.1016/j.physa.2005.06.087 Chavanis, 2008, Hamiltonian And Brownian systems with long-range interactions: III. The BBGKY hierarchy for spatially inhomogeneous systems, Phys. A Stat. Mech. Appl., 387, 787, 10.1016/j.physa.2007.10.026 Chavanis, 2008, Hamiltonian And Brownian systems with long-range interactions: IV. General kinetic equations from the quasilinear theory, Phys. A Stat. Mech. Appl., 387, 1504, 10.1016/j.physa.2007.10.034 Chavanis, 2008, Hamiltonian And Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations, Phys. A Stat. Mech. Appl., 387, 5716, 10.1016/j.physa.2008.06.016 Ortoleva, 1969, Fluctuations of the single-particle distribution function in classical fluids, Phys. Rev., 181, 429, 10.1103/PhysRev.181.429 Kadanoff, 1968, Transport coefficients near the liquid-gas critical point, Phys. Rev., 166, 89, 10.1103/PhysRev.166.89 Lebowitz, 1969, Kinetic-equation approach to time-dependent correlation functions, Phys. Rev., 188, 487, 10.1103/PhysRev.188.487 Gross, 1972, Approximate solutions of the Liouville equation I. A truncation scheme for distribution functions, Ann. Physics, 69, 42, 10.1016/0003-4916(72)90004-8 Sereda, 2013, Variational methods for time-dependent classical many-particle systems, Phys. A Stat. Mech. Appl., 392, 628, 10.1016/j.physa.2012.10.005 Grabert, 1978, Nonlinear transport and dynamics of fluctuations, J. Stat. Phys., 19, 479, 10.1007/BF01011694 Robertson, 1966, Equations of motion in nonequilibrium statistical mechanics, Phys. Rev., 144, 151, 10.1103/PhysRev.144.151 Shea, 1996, Fokker–Planck equation and langevin equation for one Brownian particle in a nonequilibrium bath, J. Phys. Chem., 100, 19035, 10.1021/jp961605d Shea, 1997, Fokker–Planck equation and non-linear hydrodynamic equations of a system of several Brownian particles in a non-equilibrium bath, Physica A, 247, 417, 10.1016/S0378-4371(97)00407-X Shea, 1998, Fokker–Planck and non-linear hydrodynamic equations of an inelastic system of several Brownian particles in a non-equilibrium bath, Physica A, 250, 265, 10.1016/S0378-4371(97)00536-0 Marconi, 2000, Dynamic density functional theory of fluids, J. Phys.: Condens. Matter, 12 Archer, 2004, Dynamical density functional theory and its application to spinodal decomposition, J. Chem. Phys., 121, 4246, 10.1063/1.1778374 Berne, 1977, Chapter 5: Projection operator techniques in the theory of fluctuations, 233 Meyer, 2017, On the non-stationary generalized Langevin equation, J. Chem. Phys., 147, 10.1063/1.5006980 Risken, 1996 Kuhnhold, 2019, Derivation of an exact, nonequilibrium framework for nucleation: Nucleation is a priori neither diffusive nor Markovian, Phys. Rev. E, 100, 10.1103/PhysRevE.100.052140 Schmidt, 2013, Power functional theory for Brownian dynamics, J. Chem. Phys., 138, 10.1063/1.4807586 Schmidt, 2018, Power functional theory for Newtonian many-body dynamics, J. Chem. Phys., 148, 10.1063/1.5008608 de Las Heras, 2018, Velocity gradient power functional for Brownian dynamics, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.028001 McPhie, 2001, Generalized Langevin equation for nonequilibrium systems, Physica A, 299, 412, 10.1016/S0378-4371(01)00328-4 Holian, 1985, Classical response theory in the Heisenberg picture, J. Chem. Phys., 83, 3560, 10.1063/1.449161 Hernandez, 1999, Stochastic dynamics in irreversible nonequilibrium environments. 1. The fluctuation–dissipation relation, J. Phys. Chem. B, 103, 1064, 10.1021/jp983625g Somer, 1999, Stochastic dynamics in irreversible nonequilibrium environments. 3. Temperature-ramped chemical kinetics, J. Phys. Chem. B, 103, 11004, 10.1021/jp9915836 Somer, 2000, Stochastic dynamics in irreversible nonequilibrium environments. 4. Self-consistent coupling in heterogeneous environments, J. Phys. Chem. B, 104, 3456, 10.1021/jp9928762 Hernandez, 1999, The projection of a mechanical system onto the irreversible generalized Langevin equation, J. Chem. Phys., 111, 7701, 10.1063/1.480160 Koltai, 2016, On metastability and Markov state models for non-stationary molecular dynamics, J. Chem. Phys., 145, 10.1063/1.4966157 Wang, 2015, Building Markov state models for periodically driven non-equilibrium systems, J. Chem. Theory Comput., 11, 1819, 10.1021/ct500997y Knoch, 2015, Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state, New J. Phys., 17, 10.1088/1367-2630/17/11/115004 Knoch, 2017, Nonequilibrium Markov state modeling of the globule-stretch transition, Phys. Rev. E, 95, 10.1103/PhysRevE.95.012503 Knoch, 2019, Non-equilibrium Markov state modeling of periodically driven biomolecules, J. Chem. Phys., 150, 10.1063/1.5055818 Floquet, 1883, Sur les équations différentielles linéaires à coefficients périodiques, 47 Seifert, 2008, Stochastic thermodynamics: Principles and perspectives, Eur. Phys. J. B, 64, 423, 10.1140/epjb/e2008-00001-9 Seifert, 2012, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Progr. Phys., 75, 10.1088/0034-4885/75/12/126001 Jarzynski, 1997, Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78, 2690, 10.1103/PhysRevLett.78.2690