Coarse-grained modelling out of equilibrium
Tài liệu tham khảo
Berendsen, 2007
Fish, 2013
Hoekstra, 2014, Multiscale modelling and simulation: A position paper, Phil. Trans. R. Soc. A, 372, 10.1098/rsta.2013.0377
Weinan, 2011
Attinger, 2004
Peter, 2009, Multiscale simulation of soft matter systems–from the atomistic to the coarse-grained level and back, Soft Matter, 5, 4357, 10.1039/b912027k
Ferreira, 2007
Einstein, 1905, Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten Teilchen, Ann. Phys., 322, 549, 10.1002/andp.19053220806
von Smoluchowski, 1906, Sur le chemin moyen parcouru par les molécules d’un gaz et sur son rapport avec la théorie de la diffusion, Bull. Int. L’Acad. Sci. Cracov., 3, 202
Langevin, 1908, Sur la théorie du mouvement brownien, C. R. L’Acad. Sci., 146, 530
Gillespie, 1996, The mathematics of Brownian motion and Johnson noise, Am. J. Phys., 64, 225, 10.1119/1.18210
Nakajima, 1958, On quantum theory of transport phenomena: Steady diffusion, Progr. Theor. Phys., 20, 948, 10.1143/PTP.20.948
Zwanzig, 1960, Ensemble method in the theory of irreversibility, J. Chem. Phys., 33, 1338, 10.1063/1.1731409
Mori, 1965, Transport, collective motion, and Brownian motion, Progr. Theoret. Phys., 33, 423, 10.1143/PTP.33.423
Zwanzig, 2001
Grabert, 1982
Te Vrugt, 2019, Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians, Phys. Rev. E, 99, 10.1103/PhysRevE.99.062118
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Parr, 1989
Hansen, 1990
Bogoliubov, 1946, Kinetic equations, J. Phys. USSR, 10, 265
Born, 1946, A general kinetic theory of liquids I. the molecular distribution functions, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci., 188, 10
Kirkwood, 1946, The statistical mechanical theory of transport processes I. General theory, J. Chem. Phys., 14, 180, 10.1063/1.1724117
Yvon, 1935
Ornstein, 1914, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Acad. Sci. Amsterdam, 17, 793
Tricomi, 1985
Zwanzig, 1961, Memory effects in irreversible thermodynamics, Phys. Rev., 124, 983, 10.1103/PhysRev.124.983
Onsager, 1931, Reciprocal relations in irreversible processes I., Phys. Rev., 37, 405, 10.1103/PhysRev.37.405
Onsager, 1931, Reciprocal relations in irreversible processes II, Phys. Rev., 38, 2265, 10.1103/PhysRev.38.2265
Meyer, 2019, On the dynamics of reaction coordinates in classical, time-dependent, many-body processes, J. Chem. Phys., 150, 10.1063/1.5090450
Øksendal, 2013
Van Kampen, 1992
Padgett, 1972, On a stochastic integro-differential equation of Volterra type, SIAM J. Appl. Math., 23, 499, 10.1137/0123054
Berger, 1980, Volterra equations with Itō integrals—I, J. Integr. Equ., 187
Chorin, 2002, Optimal prediction with memory, Physica D, 166, 239, 10.1016/S0167-2789(02)00446-3
te Vrugt, 2020, Projection operators in statistical mechanics: A pedagogical approach, Eur. J. Phys., 41, 10.1088/1361-6404/ab8e28
Hijon, 2010, Mori-Zwanzig formalism as a practical computational tool, Faraday Discuss., 144, 301, 10.1039/B902479B
Izvekov, 2017, Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function, J. Chem. Phys., 146, 10.1063/1.4978572
Zwanzig, 1973, Nonlinear generalized Langevin equations, J. Stat. Phys., 9, 215, 10.1007/BF01008729
Cortes, 1985, On the generalized langevin equation: Classical and quantum mechanical, J. Chem. Phys., 82, 2708, 10.1063/1.448268
Cui, 2018, Generalized Langevin equation and fluctuation–dissipation theorem for particle-bath systems in external oscillating fields, Phys. Rev. E, 97, 10.1103/PhysRevE.97.060102
Snook, 2006
Hernandez, 1999, Stochastic dynamics in irreversible nonequilibrium environments. 2. A model for thermosetting polymerization, J. Phys. Chem. B, 103, 1070, 10.1021/jp9836269
Bhadauria, 2015, Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water, J. Chem. Phys., 143, 10.1063/1.4934678
Lei, 2016, Data-driven parameterization of the generalized langevin equation, Proc. Natl. Acad. Sci., 113, 14183, 10.1073/pnas.1609587113
Daldrop, 2017, External potential modifies friction of molecular solutes in water, Phys. Rev. X, 7
Wang, 2020, Data-driven coarse-grained modeling of polymers in solution with structural and dynamic properties conserved, Soft Matter, 16, 8330, 10.1039/D0SM01019G
M. Ozmaian, D.E. Makarov, Transition path dynamics in the binding of intrinsically disordered proteins: A simulation study, J. Chem. Phys. 151 (23) http://dx.doi.org/10.1063/1.5129150.
Grogan, 2020, Data-driven molecular modeling with the generalized Langevin equation, J. Comput. Phys., 418, 10.1016/j.jcp.2020.109633
Glatzel, 2021, The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse-grained observables, Europhys. Lett., 136, 36001, 10.1209/0295-5075/ac35ba
Kawai, 2011, Derivation of the generalized Langevin equation in nonstationary environments, J. Chem. Phys., 134, 10.1063/1.3561065
Izvekov, 2013, Microscopic derivation of particle-based coarse-grained dynamics, J. Chem. Phys., 138, 10.1063/1.4795091
Li, 2017, Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Application to polymer melts, J. Chem. Phys., 146, 10.1063/1.4973347
Han, 2018, Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models, J. Chem. Phys., 149, 10.1063/1.5039738
Lee, 2019, The multi-dimensional generalized langevin equation for conformational motion of proteins, J. Chem. Phys., 150, 10.1063/1.5055573
Lange, 2006, Collective langevin dynamics of conformational motions in proteins, J. Chem. Phys., 124, 10.1063/1.2199530
Kinjo, 2007, Equation of motion for coarse-grained simulation based on microscopic description, Phys. Rev. E, 75, 10.1103/PhysRevE.75.051109
Chorin, 2000, Optimal prediction and the Mori–Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci., 97, 2968, 10.1073/pnas.97.7.2968
Nordholm, 1972
Nordholm, 1975, A systematic derivation of exact generalized Brownian motion theory, J. Stat. Phys., 13, 347, 10.1007/BF01012013
Boettinger, 2002, Phase-field simulation of solidification, Ann. Rev. Mater. Res., 32, 163, 10.1146/annurev.matsci.32.101901.155803
Steinbach, 2009, Phase-field models in materials science, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/7/073001
Español, 2009, Derivation of dynamical density functional theory using the projection operator technique, J. Chem. Phys., 131, 10.1063/1.3266943
Español, 2002, Coarse graining from coarse-grained descriptions, Phil. Trans. R. Soc. A, 360, 383, 10.1098/rsta.2001.0935
Kranz, 2013, Glass transition in driven granular fluids: A mode-coupling approach, Phys. Rev. E, 87, 10.1103/PhysRevE.87.022207
Glatzel, 2021, Comments on the validity of the non-stationary generalized langevin equation as a coarse-grained evolution equation for microscopic stochastic dynamics, J. Chem. Phys., 154, 10.1063/5.0049693
Frenkel, 2001
Allen, 2017
Chen, 2011, Assessment of atomistic coarse-graining methods, Internat. J. Engrg. Sci., 49, 1337, 10.1016/j.ijengsci.2011.03.018
Potestio, 2014, Computer simulations of soft matter: Linking the scales, Entropy, 16, 4199, 10.3390/e16084199
Ingólfsson, 2014, The power of coarse graining in biomolecular simulations, WIREs Comput. Mol. Sci., 4, 225, 10.1002/wcms.1169
Gartner, 2019, Modeling and simulations of polymers: A roadmap, Macromolecules, 52, 755, 10.1021/acs.macromol.8b01836
Chaimovich, 2011, Coarse-graining errors and numerical optimization using a relative entropy framework, J. Chem. Phys., 134, 10.1063/1.3557038
Rühle, 2009, Versatile object-oriented toolkit for coarse-graining applications, J. Chem. Theory Comput., 5, 3211, 10.1021/ct900369w
Praprotnik, 2008, Multiscale simulation of soft matter: From scale bridging to adaptive resolution, Ann. Rev. Phys. Chem., 59, 545, 10.1146/annurev.physchem.59.032607.093707
Ercolessi, 1994, Interatomic potentials from first-principles calculations: The force-matching method, Europhys. Lett., 26, 583, 10.1209/0295-5075/26/8/005
Lyubartsev, 1995, Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach, Phys. Rev. E, 52, 3730, 10.1103/PhysRevE.52.3730
Tschöp, 1998, Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates, Acta Polym., 49, 61, 10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V
Reith, 2003, Deriving effective mesoscale potentials from atomistic simulations, J. Comput. Chem., 24, 1624, 10.1002/jcc.10307
Rosenberger, 2016, Comparison of iterative inverse coarse-graining methods, Eur. Phys. J. Spec. Top., 225, 1323, 10.1140/epjst/e2016-60120-1
Izvekov, 2005, A multiscale coarse-graining method for biomolecular systems, J. Phys. Chem. B, 109, 2469, 10.1021/jp044629q
Lin, 2020, Structure and position-dependent properties of inhomogeneous suspensions of responsive colloids, Phys. Rev. E, 102, 10.1103/PhysRevE.102.042602
Nielsen, 2003, A coarse grain model for n-alkanes parameterized from surface tension data, J. Chem. Phys., 119, 7043, 10.1063/1.1607955
Marrink, 2007, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B, 111, 7812, 10.1021/jp071097f
Shinoda, 2007, Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants, Mol. Simul., 33, 27, 10.1080/08927020601054050
Baron, 2007, Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models, ChemPhysChem, 8, 452, 10.1002/cphc.200600658
He, 2010, Exploring the utility of coarse-grained water models for computational studies of interfacial systems, Mol. Phys., 108, 2007, 10.1080/00268976.2010.503197
Ouldridge, 2011, Structural, mechanical and thermodynamic properties of a coarse-grained DNA model, J. Chem. Phys., 134, 10.1063/1.3552946
Glaser, 1997, Quantum chemistry based force fields for soft matter, Spectrochim. Acta A Mol. Biomol. Spectrosc., 53, 1325, 10.1016/S1386-1425(97)00034-6
Izvekov, 2004, Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching, J. Chem. Phys., 120, 10896, 10.1063/1.1739396
Lyubartsev, 2009, Hierarchical multiscale modelling scheme from first principles to mesoscale, J. Comput. Theor. Nanosci., 6, 951, 10.1166/jctn.2009.1130
Xu, 2018, Perspective: Ab initio force field methods derived from quantum mechanics, J. Chem. Phys., 148, 10.1063/1.5009551
Heinz, 2016, Simulations of inorganic-bioorganic interfaces to discover new materials: Insights, comparisons to experiment, challenges, and opportunities, Chem. Soc. Rev., 45, 412, 10.1039/C5CS00890E
Shell, 2008, The relative entropy is fundamental to multiscale and inverse thermodynamic problems, J. Chem. Phys., 129, 10.1063/1.2992060
Rudzinski, 2011, Coarse-graining entropy, forces, and structures, J. Chem. Phys., 135, 10.1063/1.3663709
Groot, 1997, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys., 107, 4423, 10.1063/1.474784
Pivkin, 2011, Dissipative particle dynamics, Rev. Comput. Chem., 27, 85
Español, 2017, Perspective: Dissipative particle dynamics, J. Chem. Phys., 146, 10.1063/1.4979514
Holm, 2008
Brady, 1988, Stokesian dynamics, Annu. Rev. Fluid Mech., 20, 111, 10.1146/annurev.fl.20.010188.000551
Malevanets, 1999, Mesoscopic model for solvent dynamics, J. Chem. Phys., 110, 8605, 10.1063/1.478857
Gompper, 2009, Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, 1
Pooley, 2005, Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics, J. Phys. Chem. B, 109, 6505, 10.1021/jp046040x
Succi, 2001
Dünweg, 2009, Lattice Boltzmann simulations of soft matter systems, 89
Papenkort, 2014, Channel flow of a tensorial shear-thinning maxwell model: Lattice Boltzmann simulations, J. Chem. Phys., 140, 10.1063/1.4872219
Papenkort, 2015, Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid, J. Chem. Phys., 143, 10.1063/1.4936358
Hoogerbrugge, 1992, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett., 19, 155, 10.1209/0295-5075/19/3/001
Tschöp, 1998, Simulation of polymer melts. II. From coarse-grained models back to atomistic description, Acta Polym., 49, 75, 10.1002/(SICI)1521-4044(199802)49:2/3<75::AID-APOL75>3.0.CO;2-5
Kotelyanskii, 1996, Building large amorphous polymer structures: Atomistic simulation of glassy polystyrene, Macromolecules, 29, 8497, 10.1021/ma960071b
Hess, 2006, Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate, Soft Matter, 2, 409, 10.1039/B602076C
Peter, 2008, Classical simulations from the atomistic to the mesoscale and back: Coarse graining an azobenzene liquid crystal, Soft Matter, 4, 859, 10.1039/b717324e
Gopal, 2010, PRIMO/PRIMONA: a coarse-grained model for proteins and nucleic acids that preserves near-atomistic accuracy, Proteins, 78, 1266, 10.1002/prot.22645
Wassenaar, 2014, Going backward: A flexible geometric approach to reverse transformation from coarse grained to atomistic models, J. Chem. Theory Comput., 10, 676, 10.1021/ct400617g
Rzepiela, 2010, Reconstruction of atomistic details from coarse-grained structures, J. Comput. Chem., 31, 1333, 10.1002/jcc.21415
Chen, 2009, Backmapping coarse-grained polymer models under sheared nonequilibrium conditions, Phys. Chem. Chem. Phys., 11, 1977, 10.1039/b817895j
Peng, 2019, Backmapping from multiresolution coarse-grained models to atomic structures of large biomolecules by restrained molecular dynamics simulations using Bayesian inference, J. Chem. Theory Comput., 15, 3344, 10.1021/acs.jctc.9b00062
Li, 2020, Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach, J. Chem. Phys., 153, 10.1063/5.0012320
An, 2020, Machine learning approach for accurate backmapping of coarse-grained models to all-atom models, Chem. Commun., 56, 9312, 10.1039/D0CC02651D
T. Bayes, LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S, Philos. Trans. R. Soc. Lond. 53 (1763) 370–418, http://dx.doi.org/10.1098/rstl.1763.0053.
Praprotnik, 2005, Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly, J. Chem. Phys., 123, 10.1063/1.2132286
Praprotnik, 2007, Adaptive resolution simulation of liquid water, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/29/292201
Potestio, 2013, Hamiltonian adaptive resolution simulation for molecular liquids, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.108301
Rudd, 2000, Concurrent coupling of length scales in solid state systems, Phys. Status Solidi (B), 217, 251, 10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A
Csányi, 2004, Learn on the fly: A hybrid classical and quantum-mechanical molecular dynamics simulation, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.175503
Lu, 2006, From electrons to finite elements: A concurrent multiscale approach for metals, Phys. Rev. B, 73, 10.1103/PhysRevB.73.024108
Kramers, 1940, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7, 284, 10.1016/S0031-8914(40)90098-2
Feller, 1957
Feller, 1971
Rohrdanz, 2013, Discovering mountain passes via torchlight: Methods for the definition of reaction coordinates and pathways in complex macromolecular reactions, Ann. Rev. Phys. Chem., 64, 295, 10.1146/annurev-physchem-040412-110006
Bowman, 2013
Prinz, 2011, Markov models of molecular kinetics: Generation and validation, J. Chem. Phys., 134, 10.1063/1.3565032
Dill, 1997, From Levinthal to pathways to funnels, Nat. Struct. Biol., 4, 10, 10.1038/nsb0197-10
Onuchic, 1997, Theory of protein folding: The energy landscape perspective, Ann. Rev. Phys. Chem., 48, 545, 10.1146/annurev.physchem.48.1.545
Wales, 2003
Hummer, 2005, Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations, New J. Phys., 7, 34, 10.1088/1367-2630/7/1/034
Sittel, 2018, Perspective: Identification of collective variables and metastable states of protein dynamics, J. Chem. Phys., 149, 10.1063/1.5049637
Molgedey, 1994, Separation of a mixture of independent signals using time delayed correlations, Phys. Rev. Lett., 72, 3634, 10.1103/PhysRevLett.72.3634
Pérez-Hernández, 2013, Identification of slow molecular order parameters for Markov model construction, J. Chem. Phys., 139, 10.1063/1.4811489
Paul, 2019, Identification of kinetic order parameters for non-equilibrium dynamics, J. Chem. Phys., 150, 10.1063/1.5083627
Torrie, 1977, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys., 23, 187, 10.1016/0021-9991(77)90121-8
Landau, 2004, A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling, Amer. J. Phys., 72, 1294, 10.1119/1.1707017
Bolhuis, 2002, Transition path sampling: Throwing ropes over rough mountain passes, in the dark, Ann. Rev. Phys. Chem., 53, 291, 10.1146/annurev.physchem.53.082301.113146
P. Koltai, H. Wu, F. Noé, C. Schütte, Optimal data-driven estimation of generalized Markov state models for non-equilibrium dynamics, Computation 6 (1) http://dx.doi.org/10.3390/computation6010022.
Noé, 2013, A variational approach to modeling slow processes in stochastic dynamical systems, Multiscale Model. Simul., 11, 635, 10.1137/110858616
McGibbon, 2015, Variational cross-validation of slow dynamical modes in molecular kinetics, J. Chem. Phys., 142, 10.1063/1.4916292
Wu, 2020, Variational approach for learning Markov processes from time series data, J. Nonlinear Sci., 30, 23, 10.1007/s00332-019-09567-y
Nüske, 2014, Variational approach to molecular kinetics, J. Chem. Theory Comput., 10, 1739, 10.1021/ct4009156
Nüske, 2017, Markov State models from short non-equilibrium simulations—Analysis and correction of estimation bias, J. Chem. Phys., 146, 10.1063/1.4976518
Wan, 2020, Adaptive Markov state model estimation using short reseeding trajectories, J. Chem. Phys., 152, 10.1063/1.5142457
Berkowitz, 1981, Memory kernels from molecular dynamics, J. Chem. Phys., 75, 2462, 10.1063/1.442269
Straub, 1987, Calculation of dynamic friction on intramolecular degrees of freedom, J. Phys. Chem., 91, 4995, 10.1021/j100303a019
Shin, 2010, Brownian motion from molecular dynamics, Chem. Phys., 375, 316, 10.1016/j.chemphys.2010.05.019
Carof, 2014, Two algorithms to compute projected correlation functions in molecular dynamics simulations, J. Chem. Phys., 140, 10.1063/1.4868653
Torres-Carbajal, 2015, Brownian motion of a nano-colloidal particle: The role of the solvent, Phys. Chem. Chem. Phys., 17, 19557, 10.1039/C5CP02777B
Brennan, 2018, Data-driven closures for stochastic dynamical systems, J. Comput. Phys., 372, 281, 10.1016/j.jcp.2018.06.038
B. Kowalik, J.O. Daldrop, J. Kappler, J.C.F. Schulz, A. Schlaich, R.R. Netz, Memory-kernel extraction for different molecular solutes in solvents of varying viscosity in confinement, Phys. Rev. E 100 (1) http://dx.doi.org/10.1103/PhysRevE.100.012126.
Yamaguchi, 2002, Translational diffusion and reorientational relaxation of water analyzed by site–site generalized langevin theory, J. Chem. Phys., 116, 2502, 10.1063/1.1435569
Townsend, 2018, The intermediate scattering function for quasi-elastic scattering in the presence of memory friction, J. Phys. Commun., 2, 10.1088/2399-6528/aad221
Kneller, 2001, Computing memory functions from molecular dynamics simulations, J. Chem. Phys., 115, 11097, 10.1063/1.1421361
Satija, 2019, Generalized Langevin equation as a model for barrier crossing dynamics in biomolecular folding, J. Phys. Chem. B, 123, 802, 10.1021/acs.jpcb.8b11137
Gottwald, 2015, Parametrizing linear generalized langevin dynamics from explicit molecular dynamics simulations, J. Chem. Phys., 142, 10.1063/1.4922941
Fricks, 2009, Time-domain methods for diffusive transport in soft matter, SIAM J. Appl. Math., 69, 1277, 10.1137/070695186
Meyer, 2020, Non-Markovian out-of-equilibrium dynamics: A general numerical procedure to construct time-dependent memory kernels for coarse-grained observables, Europhys. Lett., 128, 40001, 10.1209/0295-5075/128/40001
Meyer, 2020, A numerical procedure to evaluate memory effects in non-equilibrium coarse-grained models, Adv. Theory Simul., 4
Zhu, 2020, Generalized Langevin equations for systems with local interactions, J. Stat. Phys., 1
Amati, 2019, Memory effects in the Fermi–pasta–Ulam model, J. Stat. Phys., 174, 219, 10.1007/s10955-018-2207-6
Ma, 2016, The derivation and approximation of coarse-grained dynamics from Langevin dynamics, J. Chem. Phys., 145, 10.1063/1.4967936
Grebenkov, 2011, Time-averaged quadratic functionals of a Gaussian process, Phys. Rev. E, 83, 10.1103/PhysRevE.83.061117
Lesnicki, 2016, Molecular hydrodynamics from memory kernels, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.147804
Viñales, 2020, Oscillations and negative velocity autocorrelation emerging from a Brownian particle model with hydrodynamic interactions, Phys. Rev. E, 101, 10.1103/PhysRevE.101.052140
Jung, 2017, Iterative reconstruction of memory kernels, J. Chem. Theory Comput., 13, 2481, 10.1021/acs.jctc.7b00274
V. Klippenstein, M. Tripathy, G. Jung, F. Schmid, N.F. van der Vegt, Introducing memory in coarse-grained molecular simulations, J. Phys. Chem. B http://dx.doi.org/10.1021/acs.jpcb.1c01120.
Parish, 2017, A dynamic subgrid scale model for large eddy simulations based on the Mori–Zwanzig formalism, J. Comput. Phys., 349, 154, 10.1016/j.jcp.2017.07.053
Hald, 2007, Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions, Proc. Natl. Acad. Sci., 104, 6527, 10.1073/pnas.0700084104
Basu, 2018, Extrapolation to nonequilibrium from coarse-grained response theory, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.180604
Stinis, 2013, Renormalized reduced models for singular PDEs, Commun. Appl. Math. Comput. Sci., 8, 39, 10.2140/camcos.2013.8.39
Hauge, 1973, Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys., 7, 259, 10.1007/BF01030307
Ciccotti, 1980, Computer simulation of the generalized Brownian motion, Mol. Phys., 40, 141, 10.1080/00268978000101351
Berkowitz, 1983, Generalized langevin dynamics simulations with arbitrary time-dependent memory kernels, J. Chem. Phys., 78, 3256, 10.1063/1.445244
Xiang, 1991, Generalized Langevin equations for molecular dynamics in solution, J. Chem. Phys., 94, 4463, 10.1063/1.460602
Tuckerman, 1991, Stochastic molecular dynamics in systems with multiple time scales and memory friction, J. Chem. Phys., 95, 4389, 10.1063/1.461794
Guárdia, 1985, Generalized Langevin dynamics simulation of interacting particles, J. Chem. Phys., 83, 1917, 10.1063/1.449379
Smith, 1990, Generalized Brownian dynamics. I. Numerical integration of the generalized Langevin equation through autoregressive modeling of the memory function, J. Chem. Phys., 92, 1304, 10.1063/1.458140
Wan, 1998, Generalized Langevin dynamics simulation: Numerical integration and application of the generalized Langevin equation with an exponential model for the friction kernel, Mol. Phys., 93, 901, 10.1080/00268979809482276
Gordon, 2008, A generalized Langevin algorithm for studying permeation across biological ion channels, Mol. Phys., 106, 1353, 10.1080/00268970802169145
Baczewski, 2013, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys., 139, 10.1063/1.4815917
N. Bockius, J. Shea, G. Jung, F. Schmid, M. Hanke, Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations, J. Phys. Conden. Matter 33 (21) http://dx.doi.org/10.1088/1361-648X/abe6df.
Stella, 2014, Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems, Phys. Rev. B, 89, 10.1103/PhysRevB.89.134303
Schaudinnus, 2015, Multidimensional Langevin modeling of nonoverdamped dynamics, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.050602
Yoshimoto, 2017, Construction of non-Markovian coarse-grained models employing the Mori–Zwanzig formalism and iterative Boltzmann inversion, J. Chem. Phys., 147, 10.1063/1.5009041
Lickert, 2020, Modeling non-Markovian data using Markov state and Langevin models, J. Chem. Phys., 153, 10.1063/5.0031979
Boltzmann, 1872, Weitere studien über das wärmegleichgewicht unter Gasmolekülen, 275
DiPerna, 1989, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 321, 10.2307/1971423
Bird, 1970, Direct simulation and the Boltzmann equation, Phys. Fluids, 13, 2676, 10.1063/1.1692849
Bird, 1976
Stefanov, 2019, On the basic concepts of the direct simulation Monte Carlo method, Phys. Fluids, 31, 10.1063/1.5099042
Zienkiewicz, 2006
Dimarco, 2018, An efficient numerical method for solving the Boltzmann equation in multidimensions, J. Comput. Phys., 353, 46, 10.1016/j.jcp.2017.10.010
Vlasov, 1968, The vibrational properties of an electron gas, Sov. Phys. Uspekhi, 10, 721, 10.1070/PU1968v010n06ABEH003709
Jackson, 1991
Chavanis, 2006, Hamiltonian And Brownian systems with long-range interactions: II. Kinetic equations and stability analysis, Physica A, 361, 81, 10.1016/j.physa.2005.06.088
Colonna, 2016, Boltzmann and Vlasov equations in plasma physics, 2053
Perepelkin, 2020, Exactly solvable models for the first Vlasov equation, Phys. Part. Nuclei, 51, 879, 10.1134/S1063779620050068
Mach, 2021, Accretion of the relativistic Vlasov gas onto a moving Schwarzschild black hole: Exact solutions, Phys. Rev. D, 103, 10.1103/PhysRevD.103.024044
Chavanis, 2006, Hamiltonian And Brownian systems with long-range interactions: I. Statistical equilibrium states and correlation functions, Phys. A Stat. Mech. Appl., 361, 55, 10.1016/j.physa.2005.06.087
Chavanis, 2008, Hamiltonian And Brownian systems with long-range interactions: III. The BBGKY hierarchy for spatially inhomogeneous systems, Phys. A Stat. Mech. Appl., 387, 787, 10.1016/j.physa.2007.10.026
Chavanis, 2008, Hamiltonian And Brownian systems with long-range interactions: IV. General kinetic equations from the quasilinear theory, Phys. A Stat. Mech. Appl., 387, 1504, 10.1016/j.physa.2007.10.034
Chavanis, 2008, Hamiltonian And Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations, Phys. A Stat. Mech. Appl., 387, 5716, 10.1016/j.physa.2008.06.016
Ortoleva, 1969, Fluctuations of the single-particle distribution function in classical fluids, Phys. Rev., 181, 429, 10.1103/PhysRev.181.429
Kadanoff, 1968, Transport coefficients near the liquid-gas critical point, Phys. Rev., 166, 89, 10.1103/PhysRev.166.89
Lebowitz, 1969, Kinetic-equation approach to time-dependent correlation functions, Phys. Rev., 188, 487, 10.1103/PhysRev.188.487
Gross, 1972, Approximate solutions of the Liouville equation I. A truncation scheme for distribution functions, Ann. Physics, 69, 42, 10.1016/0003-4916(72)90004-8
Sereda, 2013, Variational methods for time-dependent classical many-particle systems, Phys. A Stat. Mech. Appl., 392, 628, 10.1016/j.physa.2012.10.005
Grabert, 1978, Nonlinear transport and dynamics of fluctuations, J. Stat. Phys., 19, 479, 10.1007/BF01011694
Robertson, 1966, Equations of motion in nonequilibrium statistical mechanics, Phys. Rev., 144, 151, 10.1103/PhysRev.144.151
Shea, 1996, Fokker–Planck equation and langevin equation for one Brownian particle in a nonequilibrium bath, J. Phys. Chem., 100, 19035, 10.1021/jp961605d
Shea, 1997, Fokker–Planck equation and non-linear hydrodynamic equations of a system of several Brownian particles in a non-equilibrium bath, Physica A, 247, 417, 10.1016/S0378-4371(97)00407-X
Shea, 1998, Fokker–Planck and non-linear hydrodynamic equations of an inelastic system of several Brownian particles in a non-equilibrium bath, Physica A, 250, 265, 10.1016/S0378-4371(97)00536-0
Marconi, 2000, Dynamic density functional theory of fluids, J. Phys.: Condens. Matter, 12
Archer, 2004, Dynamical density functional theory and its application to spinodal decomposition, J. Chem. Phys., 121, 4246, 10.1063/1.1778374
Berne, 1977, Chapter 5: Projection operator techniques in the theory of fluctuations, 233
Meyer, 2017, On the non-stationary generalized Langevin equation, J. Chem. Phys., 147, 10.1063/1.5006980
Risken, 1996
Kuhnhold, 2019, Derivation of an exact, nonequilibrium framework for nucleation: Nucleation is a priori neither diffusive nor Markovian, Phys. Rev. E, 100, 10.1103/PhysRevE.100.052140
Schmidt, 2013, Power functional theory for Brownian dynamics, J. Chem. Phys., 138, 10.1063/1.4807586
Schmidt, 2018, Power functional theory for Newtonian many-body dynamics, J. Chem. Phys., 148, 10.1063/1.5008608
de Las Heras, 2018, Velocity gradient power functional for Brownian dynamics, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.028001
McPhie, 2001, Generalized Langevin equation for nonequilibrium systems, Physica A, 299, 412, 10.1016/S0378-4371(01)00328-4
Holian, 1985, Classical response theory in the Heisenberg picture, J. Chem. Phys., 83, 3560, 10.1063/1.449161
Hernandez, 1999, Stochastic dynamics in irreversible nonequilibrium environments. 1. The fluctuation–dissipation relation, J. Phys. Chem. B, 103, 1064, 10.1021/jp983625g
Somer, 1999, Stochastic dynamics in irreversible nonequilibrium environments. 3. Temperature-ramped chemical kinetics, J. Phys. Chem. B, 103, 11004, 10.1021/jp9915836
Somer, 2000, Stochastic dynamics in irreversible nonequilibrium environments. 4. Self-consistent coupling in heterogeneous environments, J. Phys. Chem. B, 104, 3456, 10.1021/jp9928762
Hernandez, 1999, The projection of a mechanical system onto the irreversible generalized Langevin equation, J. Chem. Phys., 111, 7701, 10.1063/1.480160
Koltai, 2016, On metastability and Markov state models for non-stationary molecular dynamics, J. Chem. Phys., 145, 10.1063/1.4966157
Wang, 2015, Building Markov state models for periodically driven non-equilibrium systems, J. Chem. Theory Comput., 11, 1819, 10.1021/ct500997y
Knoch, 2015, Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state, New J. Phys., 17, 10.1088/1367-2630/17/11/115004
Knoch, 2017, Nonequilibrium Markov state modeling of the globule-stretch transition, Phys. Rev. E, 95, 10.1103/PhysRevE.95.012503
Knoch, 2019, Non-equilibrium Markov state modeling of periodically driven biomolecules, J. Chem. Phys., 150, 10.1063/1.5055818
Floquet, 1883, Sur les équations différentielles linéaires à coefficients périodiques, 47
Seifert, 2008, Stochastic thermodynamics: Principles and perspectives, Eur. Phys. J. B, 64, 423, 10.1140/epjb/e2008-00001-9
Seifert, 2012, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Progr. Phys., 75, 10.1088/0034-4885/75/12/126001
Jarzynski, 1997, Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78, 2690, 10.1103/PhysRevLett.78.2690