Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: Influence of initial particle concentration

NanoImpact - Tập 3 - Trang 67-74 - 2016
Julián Alberto Gallego-Urrea1, Julia Hammes2, Geert Cornelis2, Martin Hassellöv1
1Department of Marine Sciences, University of Gothenburg, Sweden
2Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden

Tài liệu tham khảo

Afrooz, 2013, Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry, Environ. Sci. Technol., 47, 1853, 10.1021/es3032709 Arvidsson, 2011, Challenges in exposure modeling of nanoparticles in aquatic environments, Hum. Ecol. Risk Assess., 17, 245, 10.1080/10807039.2011.538639 Brewer, 2005, Probing BSA binding to citrate-coated gold nanoparticles and surfaces, Langmuir, 21, 9303, 10.1021/la050588t Buffle, 1998, A generalized description of aquatic colloidal interactions: the three-colloidal component approach, Environ. Sci. Technol., 32, 2887, 10.1021/es980217h Chanudet, 2006, A non-perturbing scheme for the mineralogical characterization and quantification of inorganic colloids in natural waters, Environ. Sci. Technol., 40, 5045, 10.1021/es060255y Chapman, 1996, Water quality assessments - a guide to use of biota, sediments and water in environmental monitoring, 609 Chellam, 1993, Fluid mechanics and fractal aggregates, Water Res., 27, 1493, 10.1016/0043-1354(93)90030-L Clay Minerals Society, Organisation for Economic Co-operation Development, 1979 Cornelis, 2013, Transport of silver nanoparticles in saturated columns of natural soils, Sci. Total Environ., 463-464, 120, 10.1016/j.scitotenv.2013.05.089 Cornelis, 2014, Fate and bioavailability of engineered nanoparticles in soils: a review, Crit. Rev. Environ. Sci. Technol., 10.1080/10643389.2013.829767 Deonarine, 2011, Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles, Environ. Sci. Technol., 45, 3217, 10.1021/es1029798 Derrendinger, 2000, Flocculation kinetics and cluster morphology in illite/NaCl suspensions, J. Colloid Interface Sci., 222, 1, 10.1006/jcis.1999.6606 Diegoli, 2008, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules, Sci. Total Environ., 402, 51, 10.1016/j.scitotenv.2008.04.023 Falabella, 2010, Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering, Langmuir, 26, 12740, 10.1021/la100761f Ferry, 2009, Transfer of gold nanoparticles from the water column to the estuarine food web, Nat. Nanotechnol., 4, 441, 10.1038/nnano.2009.157 Gallego-Urrea, 2013, On the exposure assessment of engineered nanoparticles in aquatic environments, 88 Gallego-Urrea, 2010, Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis, Environ. Chem., 7, 67, 10.1071/EN09114 Gallego-Urrea, 2011, Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples, TrAC Trends Anal. Chem., 30, 473, 10.1016/j.trac.2011.01.005 Gallego-Urrea, 2014, Multimethod 3D characterization of natural plate-like nanoparticles: shape effects on equivalent size measurements, J. Nanopart. Res., 16, 10.1007/s11051-014-2383-5 Gallego-Urrea, 2014, Influence of different types of natural organic matter on titania nanoparticle stability: effects of counter ion concentration and pH, Environ. Sci.: Nano, 1, 181 Garcia-Negrete, 2013, Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations, Environ. Pollut., 174, 134, 10.1016/j.envpol.2012.11.014 García-Negrete, 2013, Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations, Environ. Pollut., 174, 134, 10.1016/j.envpol.2012.11.014 Guo, 1995, Dynamics of dissolved organic carbon (DOC) in oceanic environments, Limnol. Oceanogr., 40, 1392, 10.4319/lo.1995.40.8.1392 Gustafsson, 2000, Functional separation of colloids and gravitoids in surface waters based on differential settling velocity: coupled cross-flow filtration-split flow thin-cell fractionation (CFF-SPLITT), Limnol. Oceanogr., 45, 1731, 10.4319/lo.2000.45.8.1731 Hammes, 2012 Hammes, 2013, Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport, Water Res., 47, 5350, 10.1016/j.watres.2013.06.015 Handy, 2008, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology, 17, 287, 10.1007/s10646-008-0199-8 Hansson, 1973, A new set of pH-scales and standard buffers for sea water, Deep Sea Res. Oceanogr. Abstr., 20, 479, 10.1016/0011-7471(73)90101-0 Hillier, 2001, Particulate composition and origin of suspended sediment in the R. Don, Aberdeenshire, UK, Sci. Total Environ., 265, 281, 10.1016/S0048-9697(00)00664-1 Hinderliter, 2010, ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies, Part. Fibre Toxicol., 7, 36, 10.1186/1743-8977-7-36 Katz, 2013, Influence of cations on aggregation rates in Mg-montmorillonite, Clays Clay Miner., 61, 1, 10.1346/CCMN.2013.0610101 Keller, 2010, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ. Sci. Technol., 44, 1962, 10.1021/es902987d Keller, 2013, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15, 1, 10.1007/s11051-013-1692-4 Khlebtsov, 2011, On the measurement of gold nanoparticle sizes by the dynamic light scattering method, Colloid J., 73, 118, 10.1134/S1061933X11010078 Lapresta-Fernández, 2012, Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, TrAC Trends Anal. Chem., 32, 40, 10.1016/j.trac.2011.09.007 Liu, 2012, Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles, Chemosphere, 87, 918, 10.1016/j.chemosphere.2012.01.045 Liu, 2012, Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches, Environ. Sci. Technol., 46, 6681, 10.1021/es300883q Liu, 2013, Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles, Environ. Sci. Technol., 47, 4113, 10.1021/es302447g Liu, 2013, Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale, Environ. Int., 59, 53, 10.1016/j.envint.2013.05.006 Louie, 2013, Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation, Environ. Sci. Technol., 47, 4245, 10.1021/es400137x Lowry, 2009, Nanomaterial transport, transformation, and fate in the environment: a risk-based perspective on research needs, 125 Lowry, 2012, Transformations of nanomaterials in the environment, Environ. Sci. Technol., 46, 6893, 10.1021/es300839e Manning, 1996, Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite, Clays Clay Miner., 44, 609, 10.1346/CCMN.1996.0440504 Moreno-Garrido, 2015, Toxicity of silver and gold nanoparticles on marine microalgae, Mar. Environ. Res., 111, 60, 10.1016/j.marenvres.2015.05.008 Nason, 2012, Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles, J. Environ. Monit., 14, 1885, 10.1039/c2em00005a Nowack, 2012, Potential scenarios for nanomaterial release and subsequent alteration in the environment, Environ. Toxicol. Chem., 31, 50, 10.1002/etc.726 Petosa, 2010, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions, Environ. Sci. Technol., 44, 6532, 10.1021/es100598h Pokhrel, 2013, Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles, Environ. Sci. Technol., 47, 12877, 10.1021/es403462j Quik, 2012, Natural colloids are the dominant factor in the sedimentation of nanoparticles, Environ. Toxicol. Chem., 31, 1019, 10.1002/etc.1783 Quik, 2014, Heteroaggregation and sedimentation rates for nanomaterials in natural waters, Water Res., 48, 269, 10.1016/j.watres.2013.09.036 Ratnaweera, 1999, Comparison of the coagulation behavior of different Norwegian aquatic NOM sources, Environ. Int., 25, 347, 10.1016/S0160-4120(98)00112-3 Ribeiro, 2014, Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Sci. Total Environ., 466–467, 232, 10.1016/j.scitotenv.2013.06.101 Roco, 2011, The long view of nanotechnology development: the National Nanotechnology Initiative at 10years, J. Nanopart. Res., 13, 427, 10.1007/s11051-010-0192-z Sharp, 2006, Coagulation of NOM: linking character to treatment, Water Sci. Technol., 53, 67, 10.2166/wst.2006.209 Stolpe, 2007, Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing with seawater, Geochim. Cosmochim. Acta, 71, 3292, 10.1016/j.gca.2007.04.025 Stolpe, 2009, Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater significance for variations in element size distributions, Limnol. Oceanogr., 55, 187, 10.4319/lo.2010.55.1.0187 Tiede, 2009, Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr. A, 1216, 503, 10.1016/j.chroma.2008.09.008 Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6, 1769, 10.3762/bjnano.6.181 Wiesner, 2009, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials†‡, Environ. Sci. Technol., 43, 6458, 10.1021/es803621k Zhou, 2012, Clay particles destabilize engineered nanoparticles in aqueous environments, Environ. Sci. Technol., 46, 7520, 10.1021/es3004427