Co-sensitization aided efficiency enhancement in betanin–chlorophyll solar cell

S. Sreeja1, Bala Pesala1
1CSIR-Central Electronics Engineering Research Institute (CEERI), CSIR Madras Complex, Taramani, Chennai, 600113, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Badawy, W.A.: A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 6, 123–132 (2015). https://doi.org/10.1016/j.jare.2013.10.001

Brédas, J.-L., Norton, J.E., Cornil, J., Coropceanu, V.: Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42, 1691–1699 (2009). https://doi.org/10.1021/ar900099h

Hardin, B.E., Snaith, H.J., McGehee, M.D.: The renaissance of dye-sensitized solar cells. Nat. Photonics 6, 162 (2012). https://doi.org/10.1038/nphoton.2012.22

O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). (ISSN 0028-0836)

Arora, N., Dar, M.I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S.M., Grätzel, M.: Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017). https://doi.org/10.1126/science.aam5655

Gratzel, M.: The advent of mesoscopic injection solar cells. Prog. Photovolt. Res. Appl. 14, 429–442 (2006). https://doi.org/10.1002/pip

Boschloo, G., Hagfeldt, A.: Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009). https://doi.org/10.1021/ar900138m

Kay, A., Graetzel, M.: Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97, 6272–6277 (1993). https://doi.org/10.1021/j100125a029

Nazeeruddin, M.K., Liska, P., Moser, J., Vlachopoulos, N., Grätzel, M.: Conversion of light into electricity with trinuclear ruthenium complexes adsorbed on textured TiO2 films. Helv. Chim. Acta 73, 1788–1803 (1990). https://doi.org/10.1002/hlca.19900730624

Klein, C., Nazeeruddin, K., Censo, D.Di, Liska, P., Grtzel, M., Gra, M.: Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg. Chem. 43, 4216–4226 (2004). https://doi.org/10.1021/ic049906m

Ma, X., Hua, J., Wu, W., Jin, Y., Meng, F., Zhan, W., Tian, H.: A high-efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron 64, 345–350 (2008). https://doi.org/10.1016/j.tet.2007.10.094

Campbell, W.M., Jolley, K.W., Wagner, P., Wagner, K., Walsh, P.J., Gordon, K.C., Schmidt-Mende, L., Nazeeruddin, M.K., Wang, Q., Grätzel, M., Officer, D.L.: Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 111, 11760–11762 (2007). https://doi.org/10.1021/jp0750598

Wang, X.F., Kitao, O.: Natural chlorophyll-related porphyrins and chlorins for dye-sensitized solar cells. Molecules 17, 4484–4497 (2012). https://doi.org/10.3390/molecules17044484

Richhariya, G., Kumar, A., Tekasakul, P., Gupta, B.: Natural dyes for dye sensitized solar cell: a review. Renew. Sustain. Energy Rev. 69, 705–718 (2017). https://doi.org/10.1016/j.rser.2016.11.198

Calogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A., Bonaccorso, F.: Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 44, 3244–3294 (2015). https://doi.org/10.1039/c4cs00309h

Ramamoorthy, R., Radha, N., Maheswari, G., Anandan, S., Manoharan, S., Victor Williams, R.: Betalain and anthocyanin dye-sensitized solar cells. J. Appl. Electrochem. 46, 929–941 (2016). https://doi.org/10.1007/s10800-016-0974-9

Sandquist, C., McHale, J.L.: Improved efficiency of betanin-based dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 221, 90–97 (2011). https://doi.org/10.1016/j.jphotochem.2011.04.030

Al-Alwani, M.A.M., Ludin, N.A., Mohamad, A.B., Kadhum, A.A.H., Sopian, K.: Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 179, 23–31 (2017). https://doi.org/10.1016/j.saa.2017.02.026

Nan, H., Shen, H.P., Wang, G., Xie, S.D., Yang, G.J., Lin, H.: Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell. Opt. Mater. 73, 172–178 (2017). https://doi.org/10.1016/j.optmat.2017.07.036

Chaiamornnugool, P., Tontapha, S., Phatchana, R., Ratchapolthavisin, N., Kanokmedhakul, S., Sang-aroon, W., Amornkitbamrung, V.: Performance and stability of low-cost dye-sensitized solar cell based crude and pre-concentrated anthocyanins: combined experimental and DFT/TDDFT study. J. Mol. Struct. 1127, 145–155 (2017). https://doi.org/10.1016/j.molstruc.2016.07.086

Talip, L.F.A., Ramli, M.M., Isa, S.S.M., Halin, D.S.C., Mazlan, N.S., Anhar, N.A.M., Danial, N.A., Muda, M.R.: Hybrid TiO2-gigantochloa albociliata charcoal in dye sensitized solar cell. IOP Conf. Ser. Mater. Sci. Eng. 209, 012086 (2017)

Orona-Navar, A., Aguilar-Hernández, I., Cerdán-Pasarán, A., López-Luke, T., Rodríguez-Delgado, M., Cárdenas-Chávez, D.L., Cepeda-Pérez, E., Ornelas-Soto, N.: Astaxanthin from Haematococcus pluvialis as a natural photosensitizer for dye-sensitized solar cell. Algal Res. 26, 15–24 (2017). https://doi.org/10.1016/j.algal.2017.06.027

Kim, S.-H.: Functional Dyes. Elsevier, New York (2006)

Yamaguchi, M.: III–V compound multi-junction solar cells: present and future. Sol. Energy Mater. Sol. Cells 75, 261–269 (2003). https://doi.org/10.1016/S0927-0248(02)00168-X

Colonna, D., Capogna, V., Lembo, A., Brown, T.M., Reale, A., Di Carlo, A.: Efficient cosensitization strategy for dye-sensitized solar cells. Appl. Phys. Express 5, 22303 (2012). https://doi.org/10.1143/APEX.5.022303

Zhou, H., Wu, L., Gao, Y., Ma, T.: Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A Chem. 219, 188–194 (2011). https://doi.org/10.1016/j.jphotochem.2011.02.008

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., IzmaylovAF, Bloino J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 revision B.01. Gaussian, Inc., Wallingford, CT (2009)

Wang, P., Zakeeruddin, S.M., Comte, P., Charvet, R., Humphry-Baker, R., Grätzel, M.: Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J. Phys. Chem. B. 107, 14336–14341 (2003). https://doi.org/10.1021/jp0365965

Guesmi, A., Ladhari, N., Ben, N., Msaddek, M., Sakli, F.: First application of chlorophyll-a as biomordant: sonicator dyeing of wool with betanin dye. J. Clean. Prod. 39, 97–104 (2013). https://doi.org/10.1016/j.jclepro.2012.08.029

Eli, D.: Chlorophyll and betalain as light-harvesting pigments for nanostructured TiO2 based dye-sensitized solar cells. J. Energy Nat. Resour. 5, 53 (2016). https://doi.org/10.11648/j.jenr.20160505.11

Sengupta, D., Mondal, B., Mukherjee, K.: Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 85–92 (2015). https://doi.org/10.1016/j.saa.2015.03.120

Naphade, R.A., Tathavadekar, M., Jog, J.P., Ogale, S., Agarkar, S., Ogale, S.: Plasmonic light harvesting of dye sensitized solar cells by Au-nanoparticle loaded TiO2 nanofibers. J. Mater. Chem. A 2, 975–984 (2014). https://doi.org/10.1039/C3TA13246C

Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Gra, M., Péchy, P., Grätzel, M.: Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt. Res. Appl. 15, 603–612 (2007). https://doi.org/10.1002/pip.768

O’Regan, B.C., Durrant, J.R., Sommeling, P.M., Bakker, N.J.: Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. charge density, band edge shifts, and quantification of recombination losses at short circuit. J. Phys. Chem. C 111, 14001–14010 (2007). https://doi.org/10.1021/jp073056p

Lee, S.W., Ahn, K.S., Zhu, K., Neale, N.R., Frank, A.J.: Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, light harvesting, and charge-carrier dynamics in dye-sensitized solar cells. J. Phys. Chem. C 116, 21285–21290 (2012). https://doi.org/10.1021/jp3079887

Man-Gu, K., Park, N.-G., Kim, K.-M., Chang, S.-H.: Dye sensitized solar cells including polymer electrolyte gel containing poly(vinyldene fluoride). Patent No. US 6,756,537 B2 (2004)

Fabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Boschloo, G., Hagfeldt, A.: Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 87, 117–131 (2005). https://doi.org/10.1016/j.solmat.2004.07.017

Fabregat-Santiago, F., Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeeruddin, S.M., Grätzel, M.: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111, 6550–6560 (2007). https://doi.org/10.1021/jp066178a

Kern, R., Sastrawan, R., Ferber, J., Stangl, R., Luther, J.: Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 47, 4213–4225 (2002). https://doi.org/10.1016/S0013-4686(02)00444-9

Zheng, D., Ye, M., Wen, X., Zhang, N., Lin, C.: Electrochemical methods for the characterization and interfacial study of dye-sensitized solar cell. Sci. Bull. 60, 850–863 (2015). https://doi.org/10.1007/s11434-015-0769-0

Yemu, B.: Z SimpWin version:2; electrochemical impedance spectroscopy (EIS) data analysis software. Princeton Applied Research, Princeton, NJ (1999)

Park, K., Kim, T., Park, J., Jin, E., Yim, S., Choi, D., Lee, J.: Dyes and pigments adsorption characteristics of gardenia yellow as natural photosensitizer for dye-sensitized solar cells. Dye. Pigments 96, 595–601 (2013). https://doi.org/10.1016/j.dyepig.2012.10.005

(ASTM), A.S. for T. and M.: Reference solar spectral irradiance: air mass 1.5. Terrestrial reference spectra for photovoltaic performance evaluation (2003)

Alvarado-gonzález, M., Flores-holguín, N., Glossman-mitnik, D.: Computational nanochemistry study of the molecular structure and properties of chlorophyll a. Int. J. Photoenergy 2013, 8 (2013). https://doi.org/10.1155/2013/424620

Saito, K., Suzuki, T., Ishikita, H.: Absorption-energy calculations of chlorophyll a and b with an explicit solvent model. J. Photochem. Photobiol. A Chem. 358, 422–431 (2018). https://doi.org/10.1016/j.jphotochem.2017.10.003

Zoski, C.: Handbook of Electrochemistry. Elsevier Science, New York (2006)

Liberatore, M., Decker, F., Burtone, L., Zardetto, V., Brown, T.M., Reale, A., Di Carlo, A.: Using EIS for diagnosis of dye-sensitized solar cells performance. J. Appl. Electrochem. 39, 2291–2295 (2009). https://doi.org/10.1007/s10800-009-9806-5

Sarker, S., Ahammad, A.J.S., Seo, H.W., Kim, D.M.: Review article: electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation. Int. J. Photoenergy 2014, 1–17 (2014). https://doi.org/10.1155/2014/851705

Wang, M., Chen, P., Humphry-baker, R., Zakeeruddin, S.M., Grätzel, M.: The influence of charge transport and recombination on the performance of dye-sensitized solar cells. Chem. Phys. Chem. 10, 290–299 (2008). https://doi.org/10.1002/cphc.200800708

Raja, V., Shiamala, L., Alamelu, K., Jaffar Ali, B.M.: A study on the free radical generation and photocatalytic yield in extended surfaces of visible light active TiO2 compounds. Sol. Energy Mater. Sol. Cells 152, 125–132 (2016). https://doi.org/10.1016/j.solmat.2016.03.008

Yan, Z., Gong, W., Chen, Y., Duan, D., Li, J., Wang, W., Wang, J.: Visible-light degradation of dyes and phenols over mesoporous titania prepared by using anthocyanin from red radish as template. Int. J. Photoenergy (2014). https://doi.org/10.1155/2014/968298

Hamad, H.A., Sadik, W.A., Abd El-Latif, M.M., Kashyout, A.B., Feteha, M.: Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO2 nanoparticles. J. Environ. Sci. 43, 26–39 (2016). https://doi.org/10.1016/j.jes.2015.05.033