Co-localization of vesicles and P/Q Ca2+-channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells
Tài liệu tham khảo
Albillos, 1996, Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations, Pflügers Arch., 432, 1030, 10.1007/s004240050231
Almazan, 1984, Effects of collagenase on the release of [3H]-noradrenaline from bovine cultured adrenal chromaffin cells, Br. J. Pharmacol., 81, 599, 10.1111/j.1476-5381.1984.tb16124.x
Artalejo, 1994, Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells, Nature, 367, 72, 10.1038/367072a0
Aunis, 1980, Immunohistochemical and immunocytochemical localization of myosin, chromogranin A and dopamine-beta-hydroxylase in nerve cells in culture and in adrenal glands, J. Neurocytol., 9, 255, 10.1007/BF01205161
Ballesta, 1989, Separate binding and functional sites for ω-conotoxin and nitrendipine suggest two types of calcium channels in bovine chromaffin cells, J. Neurochem., 53, 1050, 10.1111/j.1471-4159.1989.tb07394.x
Criado, 1999, A single amino acid near the C terminus of SNAP-25 is essential for exocytosis in chromaffin cells, Proc. Natl. Acad. Sci. USA, 96, 7256, 10.1073/pnas.96.13.7256
Galli, 1995, v- and t-SNAREs in neuronal exocytosis: A need for additional components to define sites of release, Neuropharmacology, 34, 1351, 10.1016/0028-3908(95)00113-K
Gíl, 2000, The cytoskeleton modulates slow secretory components rather than readily releasable vesicle pools in bovine chromaffin cells, Neuroscience, 98, 605, 10.1016/S0306-4522(00)00132-9
Gomis, 1994, Ruthenium red inhibits selectively chromaffin cell calcium channels, Biochem. Pharmacol., 47, 225, 10.1016/0006-2952(94)90010-8
Gu, 1996, Characterization and localization of adrenal nicotinic acetylcholine receptors: Evidence that mAb35-nicotinic receptors are the principal receptors mediating adrenal catecholamine secretion, J. Neurochem., 66, 1454, 10.1046/j.1471-4159.1996.66041454.x
Gutiérrez, 1995, Anti-syntaxin antibodies inhibit calcium-dependent catecholamine secretion from permeabilized chromaffin cells, Biochem. Biophys. Res. Commun., 206, 1, 10.1006/bbrc.1995.1001
Gutiérrez, 1995, A peptide that mimics the carboxy-terminal domain of SNAP-25 blocks Ca-dependent exocytosis in chromaffin cells, FEBS Lett., 372, 39, 10.1016/0014-5793(95)00944-5
Gutiérrez, 1997, A peptide that mimics the C-terminal sequence of SNAP-25 inhibits secretory vesicle docking in chromaffin cells, J. Biol. Chem., 272, 2634, 10.1074/jbc.272.5.2634
Gutiérrez, 1998, Preferential localization of exocytotic active zones in the terminals of neurite-emitting chromaffin cells, Eur. J. Cell Biol., 76, 274, 10.1016/S0171-9335(98)80005-8
Hesketh, 1981, A phase-contrast and immunofluorescence study of adrenal medullary chromaffin cells in culture: Neurite formation, actin and chromaffin granule distribution, Cell Tissue Res., 218, 331, 10.1007/BF00210348
Heuser, 1977, Structure of the synapse. Handbook of Physiology, Vol. 1, 261
Hui, 1991, Molecular cloning of multiple subtypes of a novel rat brain isoform of the alpha 1 subunit of the voltage dependent calcium channel, Neuron, 7, 35, 10.1016/0896-6273(91)90072-8
Kannan, 1996, SNAP-25 is differentially expressed by noradrenergic and adrenergic chromaffin cells, FEBS Lett., 385, 159, 10.1016/0014-5793(96)00350-X
Lara, 1998, Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells, Pflügers Arch., 435, 472, 10.1007/s004240050541
Lawrence, 1994, Botulinum A and the light chain of tetanus toxin inhibit distinct stages of Mg-ATP-dependent catecholamine exocytosis from permeabilized chromaffin cells, Eur. J. Biochem., 222, 325, 10.1111/j.1432-1033.1994.tb18871.x
Lazarides, 1976, Actin, α-actinin and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol., 68, 202, 10.1083/jcb.68.2.202
Lopez, 1994, Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells, FEBS Lett., 349, 331, 10.1016/0014-5793(94)00696-2
Lukyanetz, 1999, Different types of calcium channels and secretion from bovine chromaffin cells, Eur. J. Neurosci., 11, 2865, 10.1046/j.1460-9568.1999.00707.x
Monck, 1994, Pulsed laser imaging of rapid Ca2+ gradients in excitable cells, Biophys. J., 67, 505, 10.1016/S0006-3495(94)80554-5
Owen, 1989, Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenalin and uptake of calcium in adrenal chromaffin cells, Br. J. Pharmacol., 97, 133, 10.1111/j.1476-5381.1989.tb11933.x
Robinson, 1995, Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells, Proc. Natl. Acad. Sci. USA, 92, 2474, 10.1073/pnas.92.7.2474
Rosario, 1989, Voltagesensitive calcium flux into bovine chromaffin cells occurs through dihydropyridine-sensitive and dihydropyridine and ω-conotoxin-insensitive pathways, Neuroscience, 29, 735, 10.1016/0306-4522(89)90145-0
Roth, 1994, SNAP-25 is present in a SNARE complex in adrenal chromaffin cells, FEBS Lett., 351, 207, 10.1016/0014-5793(94)00833-7
Schroeder, 1994, Zones of exocytotic release on bovine adrenal medullary cells in culture, J. Biol. Chem., 269, 17215, 10.1016/S0021-9258(17)32542-5
Starr, 1991, Primary structure of a calcium channel that is highly expressed in the rat cerebellum, Proc. Natl. Acad. Sci. USA, 88, 5621, 10.1073/pnas.88.13.5621
Westenbroek, 1992, Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit, Neuron, 9, 1099, 10.1016/0896-6273(92)90069-P
Wick, 1997, Punctate appearance of dopamine-β-hydroxylase on the chromaffin cell surface reflects the fusion of individual chromaffin granules upon exocytosis, Neuroscience, 80, 847, 10.1016/S0306-4522(97)00062-6