Sự Kết Hợp Giữa Nấm Mycorrhiza Arbuscular và Vi Khuẩn Kích Thích Tăng Trưởng Cây Cối Tăng Cường Tăng Trưởng và Quá Trình Quang Hợp của Cây Thuốc Lá Dưới Căng Thẳng Hạn Hán Qua Việc Tăng Cường Đề Kháng Oxi Hóa và Chuyển Hóa Dinh Dưỡng Khoáng

Naheeda Begum1, Ling Wang1, Husain Ahmad2, Kashif Akhtar3, Rana Roy4, Muhammad Ishfaq Khan5, Tuanjie Zhao1
1National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
2College of Horticulture, Northwest A & F University, Yangling, China
3State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio-resources, College of Life Science and Technology, Guangxi University, Nanning, China
4Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, Bangladesh
5Department of Weed Science, the University of Agriculture Peshawar, Peshawar, Pakistan

Tóm tắt

Căng thẳng hạn hán là một mối quan ngại môi trường lớn có thể hạn chế sự phát triển của cây trồng trên quy mô rộng khắp trên thế giới. Cần có những nỗ lực đáng kể để vượt qua vấn đề này nhằm cải thiện sản lượng cây trồng. Do đó, vai trò thú vị của các vi sinh vật có lợi trong điều kiện căng thẳng cần được khám phá sâu hơn. Trong nghiên cứu này, vai trò của hai thực thể sinh học, cụ thể là nấm mycorrhiza arbuscular (AMF, Glomus versiforme) và vi khuẩn kích thích tăng trưởng cây cối (PGPR, Bacillus methylotrophicus) được khảo sát trong khả năng chịu hạn của cây thuốc lá (Nicotiana tabacum L.). Kết quả hiện tại cho thấy rằng căng thẳng hạn hán đã làm giảm đáng kể sự phát triển của cây thuốc lá và các đặc điểm sinh lý của chúng. Tuy nhiên, những cây được cấy ghép đồng thời AMF và PGPR cho thấy khả năng chịu hạn cao hơn nhờ việc cải thiện đáng kể sự phát triển và khối lượng sinh khối của cây thuốc lá. Hơn nữa, việc cấy ghép đồng thời AMF và PGPR đã làm tăng đáng kể chlorophyll a, b, tổng chlorophyll, carotenoid, quang hợp và hiệu quả PSII lần lượt là 96.99%, 76.90%, 67.96% và 56.88%, 53.22%, và 33.43% dưới điều kiện căng thẳng hạn hán. Thêm vào đó, người ta nhận thấy rằng căng thẳng hạn hán đã làm tăng sự peroxy hóa lipid và rò rỉ điện giải. Tuy nhiên, cấy ghép đồng thời AMF và PGPR đã giảm sự rò rỉ điện giải và peroxy hóa lipid và làm tăng đáng kể sự tích lũy phenol và flavonoid lần lượt là 57.85% và 71.74%. Tương tự, hoạt động enzym chống oxy hóa và trạng thái dinh dưỡng của thực vật cũng được cải thiện đáng kể ở những cây được cấy ghép đồng thời dưới tình trạng căng thẳng hạn hán. Ngoài ra, việc cấy ghép AMF và PGPR cũng làm tăng nồng độ axit abscisic (ABA) và axit indole-3-acetic (IAA) lần lượt là 67.71% và 54.41% trong các chồi của cây thuốc lá. Các phát hiện hiện tại cho thấy rằng việc cấy ghép AMF và PGPR (có thể riêng lẻ hoặc kết hợp) đã cải thiện sự phát triển và giảm thiểu sự thay đổi quang hợp với sự gia tăng tương ứng của chuyển hóa thứ cấp, sự tích tụ osmolyt và hệ thống chống oxy hóa.

Từ khóa

#căng thẳng hạn hán #nấm mycorrhiza arbuscular #vi khuẩn kích thích tăng trưởng cây #cây thuốc lá #quang hợp #hoạt động enzym chống oxy hóa

Tài liệu tham khảo

Mathur S, Tomar RS, Jajoo A (2019) Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynth Res 139:227–238. https://doi.org/10.1007/s11120-018-0538-4

Chastain DR, Snider JL, Collins GD et al (2014) Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. J Plant Physiol 171:1576–1585

Ahanger MA, Tomar NS, Tittal M et al (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23:731–744. https://doi.org/10.1007/s12298-017-0462-7

Koffler BE, Luschin-Ebengreuth N, Stabentheiner E et al (2014) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144. https://doi.org/10.1016/j.plantsci.2014.08.002

Cheng L, Han M, Yang LM et al (2018) Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind Crops Prod 122:473–482

Ahmad P, Ashraf M, Hakeem KR et al (2014) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J plant Interact 9:1–9

Hanin M, Ebel C, Ngom M et al (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

Zhang J, Zhang J, Wang M et al (2019) Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. J Soils Sediments 19:2313–2321. https://doi.org/10.1007/s11368-018-02226-x

Peedin GF Tobacco cultivation. In: Myers ML (ed) Specialty Crops International Labor Organization

Peedin GF (2011) Tobacco cultivation. In: Myers, M.L. (Ed.), Specialty Crops. International Labor Organization

Kist BB (2018) Anuario Brasileiro Do Tabaco. 2018, p. 132

Mohasseli V, Sadeghi S (2019) Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation. Ind Crops Prod 130:130–136. https://doi.org/10.1016/j.indcrop.2018.12.058

Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35:1535–1546. https://doi.org/10.1002/elps.201300568

Zeng Y, Guo L-P, Chen B-D et al (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265

Shahzad R, Khan AL, Bilal S et al (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:1–10. https://doi.org/10.3389/fpls.2018.00024

Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

Ahmad H, Hayat S, Ali M et al (2018) The combination of arbuscular mycorrhizal fungi inoculation (Glomus versiforme) and 28-homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (Cucumis sativus L.) under sali. Ecol Evol 8:5724–5740. https://doi.org/10.1002/ece3.4112

Begum N, Ahanger MA, Su Y et al (2019) Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants 8:1–20. https://doi.org/10.3390/plants8120579

Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

Suharno S, Sufaati S, Agustini V, Tanjung RHR (2018) Arbuscular mycorrhizal fungi associated with wati (Piper methysticum), a medicinal plant from Merauke Lowland, Papua, Indonesia. Biosaintifika J Biol Biol Educ 10:260–266. https://doi.org/10.15294/biosaintifika.v10i2.14303

Yang Y, Cao Y, Li Z et al (2020) Interactive effects of exogenous melatonin and Rhizophagus intraradices on saline-alkaline stress tolerance in Leymus chinensis. Mycorrhiza. https://doi.org/10.1007/s00572-020-00942-2

Begum N, Qin C, Ahanger MA et al (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.01068

Begum N, Ahanger MA, Zhang L (2020) AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environ Exp Bot 176:104088. https://doi.org/10.1016/j.envexpbot.2020.104088

Nell M, Wawrosch C, Steinkellner S et al (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76:393–398

Gianinazzi S, Gollotte A, Binet MN et al (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. https://doi.org/10.1007/s00572-010-0333-3

Zubek S, Błaszkowski J, Seidler-łozykowska K et al (2013) Arbuscular mycorrhizal fungi abundance, species richness and composition under the monocultures of five medicinal plants. Acta Sci Pol Hortorum Cultus 12:127–141

León Morcillo RJ, Ocampo JA, García Garrido JM (2012) Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza. Plant Signal Behav 7:1584–1588

Babenko LM, Shcherbatiuk MM, Skaterna TD, Kosakivska IV (2017) Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr Biochem J 89:5–21

Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190

Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/j.tplants.2008.10.004

Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 1–15

Simova-Stoilova L, Demirevska K, Petrova T et al (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 54:529–536. https://doi.org/10.17221/427-pse

Su AY, Niu SQ, Liu YZ et al (2017) Synergistic effects of bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass. Int J Mol Sci 18:1–13. https://doi.org/10.3390/ijms18122651

Gururani MA, Upadhyaya CP, Baskar V et al (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258. https://doi.org/10.1007/s00344-012-9292-6

Arshad M, Shaharoona B, MAHMOOD T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Project supported by the Higher Education Commission, Islamabad, Pakistan (No. PIN 041 2. Pedosphere 18:611–620. https://doi.org/10.1016/S1002-0160(08)60055-7

Vílchez JI, García-Fontana C, Román-Naranjo D et al (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1–11. https://doi.org/10.3389/fmicb.2016.01577

Priyadharsini P, Muthukumar T (2015) Insight into the role of arbuscular mycorrhizal fungi in sustainable agriculture. In: Environmental Sustainability. Springer, New Delhi, 3–37

Kumar A, Sharma S, Mishra S (2016) Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas. Plant Biosyst 150:1056–1064. https://doi.org/10.1080/11263504.2014.1001001

Ahmad P, Hashem A, Abd-Allah EF et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:1–15. https://doi.org/10.3389/fpls.2015.00868

Vardharajula S, Ali SZ, Grover M et al (2011) Drought-tolerant plant growth promoting bacillus spp.: effect on growth, osmol ytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14. https://doi.org/10.1080/17429145.2010.535178

Cvikrová M, Gemperlová L, Martincová O, Vanková R (2013) Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiol Biochem 73:7–15. https://doi.org/10.1016/j.plaphy.2013.08.005

Bahrami-Rad S, Hajiboland R (2017) Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: comparison of root with foliar application. Ann Agric Sci 62:121–130

Daniel B, Skipper H (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, pp 29–35

Black, CA (1965) Methods of soil analysis: part I physical and mineralogical properties. Am Soc Agron, Madison

Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(158):18. https://doi.org/10.1016/s0007-1536(70)80110-3

Road O, Division AP (1990) How To quantify amf colonization on root. New Phytol 115:495–495

Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris Plant Physiol 24:1–15

Liu T, Sheng M, Wang CY et al (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53:250–258. https://doi.org/10.1007/s11099-015-0100-y

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

Fong J, Schaffer FL, Kirk PL (1953) The ultramicrodetermination of glycogen in liver. A comparison of the anthrone and reducing - sugar methods 1 separation of glycogen 45(3):19–326

Sadasivam S, and Manickam A (2004) “Biochemical Methods,” 2nd Edition, New Age International (P) Limited Publishers, New Delhi

Weatherley PE (1949) Studies in the water relations of I. The field measurement of water deficits in leaves. New Phytol 49:81–86

Heath R, Packer L (1968) Photoperoxidation in isolated chloroplasts of fatty acid peroxidation chlorophyll. Arch Biochem biophisics 126:189–198

Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

Singleton VL, Rossi JA, Jr J (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

Vaganan MM, Ravi I, Nandakumar A et al (2014) Phenylpropanoid enzymes, phenolic polymers and metabolites as chemical defenses to infection of Pratylenchus coffeae in roots of resistant and susceptible bananas (Musa spp). Indian J Exp Biol 52(3):252–260

Doderer A, Kokkelink I, van der Veen S, Valk B, Schram A, Douma A (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta 112:97–104

Dhindsa RS, Plumb-dhindsa P, Thorpe TA (1981) Leaf senescence : correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase content in a trusted digital archive. We use information technology and tools to increase produ. J Exp Bot 32:93–101

Aebi H (1984) Catalase in vitro. Methods in enzymol, vol 105. Academic Press, Cambridge, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

Nakano Y, Asada K (1981) Hydrogen Peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Hori M, Kondo H, Ariyoshi N et al (1997) Changes in the hepatic glutathione peroxidase redox system produced by coplanar polychlorinated biphenyls in Ah-responsive and -less-responsive strains of mice: mechanism and implications for toxicity. Environ Toxicol Pharmacol 3:267–275. https://doi.org/10.1016/S1382-6689(97)00025-2

Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82: 70–77

Mukherjee SP, Choudhuri MA (1983) Implications of water stressinduced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiol 58:166–170

Steyermark A (1961) Quantitative organic microanalysis. Academic Press, London, p 665

Olsen SR, Cole CV, Watandbe F, Dean LL (1954) Estimation of available phosphorus in soil by extraction with sodium bi- carbonate. J Chem Inf Model 53(9):1689–1699

Khosravi H, Haydari E, Shekoohizadegan S, Zareie S (2017) Assessment the effect of drought on vegetation in desert area using Landsat data. Egypt J Remote Sens Sp Sci 20:S3–S12. https://doi.org/10.1016/j.ejrs.2016.11.007

Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460. https://doi.org/10.1016/j.plaphy.2017.04.017

Rahimzadeh S, Pirzad A (2017) Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. Mycorrhiza 27:537–552. https://doi.org/10.1007/s00572-017-0775-y

Ye L, Zhao X, Bao E et al (2019) Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem ii activities and stress-response gene expressions under salinity-alkalinity stresses. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.00863

Gamalero E, Martinotti MG, Trotta A et al (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300. https://doi.org/10.1046/j.1469-8137.2002.00460.x

Sheteiwy MS, Ali DFI, Xiong YC et al (2021) Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol 21:1–21. https://doi.org/10.1186/s12870-021-02949-z

Aalipour H, Nikbakht A, Etemadi N et al (2020) Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci Hortic (Amsterdam) 261:108923. https://doi.org/10.1016/j.scienta.2019.108923

Diagne N, Ndour M, Djighaly PI et al (2020) Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front Sustain Food Syst 4:1–8. https://doi.org/10.3389/fsufs.2020.601004

Moreira H, Pereira SIA, Vega A et al (2020) Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J Environ Manage 257:109982. https://doi.org/10.1016/j.jenvman.2019.109982

Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678. https://doi.org/10.1007/s00248-006-9078-0

del Mar AM, Kohler J, Caravaca F, Roldán A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–951. https://doi.org/10.1007/s00248-009-9544-6

Hashem A, Alqarawi AA, Radhakrishnan R et al (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009

Kavatagi PK, Lakshman HC (2014) Interaction between AMF and plant growth-promoting rhizobacteria on two varieties of Solanum lycopersicum L. World Appl Sci J 32:2054–2062

Visen A, Bohra M, Singh PN et al (2017) Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere 3:196–202. https://doi.org/10.1016/j.rhisph.2017.04.006

Nagargade M, Tyagi V, Singh MK (2018) Role of rhizospheric microbes in soil. Role Rhizospheric Microbes Soil. https://doi.org/10.1007/978-981-10-8402-7

Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

Verma RK, Sachan M, Vishwakarma K, Upadhyay N, Mishra RK, Tripathi DK, Sharma S (2018) Role of PGPR in sustainable agriculture: molecular approach toward disease suppression and growth promotion. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 259–290

Calvo-Polanco M, Molina S, Zamarreño AM et al (2014) The symbiosis with the arbuscular mycorrhizal fungus rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029. https://doi.org/10.1093/pcp/pcu035

Sato T, Hachiya S, Inamura N et al (2019) Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza. https://doi.org/10.1007/s00572-019-00923-0

Dal Cortivo C, Barion G, Ferrari M et al (2018) Effects of field inoculation with VAM and bacteria consortia on root growth and nutrients uptake in common wheat. Sustain 10(9):32–86. https://doi.org/10.3390/su10093286

Musyoka DM, Njeru EM, Nyamwange MM, Maingi JM (2020) Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams (Vigna radiata L.) under water stress. J Plant Nutr 43:1036–1047. https://doi.org/10.1080/01904167.2020.1711940

Armada E, Azcón R, López-Castillo OM et al (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74. https://doi.org/10.1016/j.plaphy.2015.03.004

Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. https://doi.org/10.1093/jxb/eri060

Porcar-Castell A, Tyystjärvi E, Atherton J et al (2014) Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot 65:4065–4095. https://doi.org/10.1093/jxb/eru191

Dalal VK, Tripathy BC (2012) Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell Environ 35:1685–1703. https://doi.org/10.1111/j.1365-3040.2012.02520.x

Yooyongwech S, Samphumphuang T, Tisarum R et al (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic (Amsterdam) 198:107–117. https://doi.org/10.1016/j.scienta.2015.11.002

Fang S, Tao Y, Zhang Y et al (2018) Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings. Chirality 30:469–474. https://doi.org/10.1002/chir.22810

He F, Sheng M, Tang M (2017) Effects of rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in robinia pseudoacacia L Under drought stress. Front Plant Sci 8:1–14. https://doi.org/10.3389/fpls.2017.00183

Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75–82

Ahanger MA, Tittal M, Mir RA, Agarwal R (2017) Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma 254:1953–1963. https://doi.org/10.1007/s00709-017-1086-z

Shamsul H, Qaiser H, Mohammed NA, Arif SW, John PAA (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466. https://doi.org/10.4161/psb.21949

Meena M, Divyanshu K, Kumar S et al (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5:e02952. https://doi.org/10.1016/j.heliyon.2019.e02952

Behrooz A, Vahdati K, Rejali F et al (2019) Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54:1087–1092. https://doi.org/10.21273/HORTSCI13961-19

Hossain MA, Bhattacharjee S, Armin SM, et al. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420

Srivastava RKSC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci

Fouad MO, Essahibi A, Benhiba L, Qaddoury A (2014) Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res 12:763–771. https://doi.org/10.5424/sjar/2014123-4815

Mirzaee M, Moieni A, Ghanati F (2013) Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. J Agric Sci Technol 15:593–602

Chandra D, Srivastava R, Gupta VV et al (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65(5). https://doi.org/10.1139/cjm-2018-0636

Hazzoumi Z, Moustakime Y, Elharchli E, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2:10. https://doi.org/10.1186/s40538-015-0035-3

Cervantes-Gámez RG, Bueno-Ibarra MA, Cruz-Mendívil A et al (2016) Arbuscular mycorrhizal symbiosis-induced expression changes in Solanum lycopersicum leaves revealed by RNA-seq analysis. Plant Mol Biol Report 34:89–102

Osakabe Y, Nishikubo N, Osakabe K (2007) Phenylalanine ammonia-lyase in woody plants: a key swich of carbon accumulation in biomass. Jpn J Plant Sci 1:103–108

Da Trindade R, Almeida L, Xavier L et al (2019) Arbuscular mycorrhizal fungi colonization promotes changes in the volatile compounds and enzymatic activity of lipoxygenase and phenylalanine ammonia lyase in Piper nigrum L. ‘Bragantina’. Plants (Basel, Switzerland) 8(11). https://doi.org/10.3390/plants8110442

Zhang Z, Zhang J, Xu G et al (2019) Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New For 50:593–604. https://doi.org/10.1007/s11056-018-9681-1

Liu C, Ravnskov S, Liu F et al (2018) Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci 156:46–58. https://doi.org/10.1017/S0021859618000023

Meixner C, Ludwig-Müller J, Miersch O et al (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715. https://doi.org/10.1007/s00425-005-0003-4

Torelli A, Trotta A, Acerbi L et al (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35. https://doi.org/10.1023/A:1026430019738

Shaul-Keinan O, Gadkar V, Ginzberg I et al (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507. https://doi.org/10.1046/j.1469-8137.2002.00388.x