Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol

Springer Science and Business Media LLC - Tập 46 - Trang 415-420 - 2010
Jinxin Zhang1, Min Yang1, Shen Tian1, Yazhen Zhang1, Xiushan Yang1
1College of Life Science, Capital Normal University, Beijing, China

Tóm tắt

The inability oft Saccharomyces cerevisiae to utilize xylose is attributed to its inability to convert xylose to xylulose. Low xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in S. cerevisiae are regarded as the reason of blocking the pathway from xylose to xylulose. We had found that Candida shehatae could also be another source for XR gene except Pichia stipitis in the previous study. In this study, we tried to investigate if the expressed XR from C. shehatae could work with the over-expressed endogenous XDH together to achieve the same goal of converting xylose to ethanol in S. cerevisiae. The XR gene (XYL1) from C. shehatae and endogenous XDH gene (XYL2) were both cloned and over-expressed in host S. cerevisiae cell. The specific enzyme activities of XR and XDH were measured and the result of fermentation revealed that the new combination of two enzymes from different sources other than P. stipitis could also coordinate and work with each other and confer xylose utilization ability to S. cerevisiae.

Tài liệu tham khảo

Kötter, P. and Ciriacy, M., Appl. Microbiol. Biotechnol., 1993, vol. 38, no. 6, pp. 776–783. Byron, C.H. and Hung, L., Biotechnol. Adv., 2007, vol. 25, no. 5, pp. 425–441. Govinden, R., Pillay, B., Van Zyl, W.H., and Pillay, D., Appl. Microbiol. Biotechnol., 2001, vol. 55, no. 1, pp. 76–80. Zhang, J.X., Tian, S., Zhang, Y.Z., and Yang, X.S., Appl. Biochem. Biotechnol., 2008, vol. 150, no. 2, pp. 185–192. Richard, P., Toivari, M.H., and Penttila, M., FEBS Lett., 1999, vol. 457, no. 1, pp. 135–138. Toivari, M.H., Salusjarvi, L., Ruohonen, L., and Penttila, M., Appl. Environ. Microbiol., 2004, vol. 70, no. 6, pp. 3681–3686. Teunissen, A.R.H., Holub, E., and Hucht, J.V.D., Yeast, 1993, vol. 9, no. 1, pp. 1–10. Gietz, R.D., Woods, R.A., and Method, Enzymol., 2002, vol. 350, pp. 87–96. Wang, Y., Shi, W.L., Liu, X.Y., Shen, Y., Bao, X.M., Bai, F.W., and Qu, Y.B., Biotechnol. Lett., 2004, vol. 26, no. 11, pp. 885–890. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254. Tantirungkij, M., Seki, T., and Yoshida, T., Ann. N.Y. Acad. Sci., 1994, vol. 721, pp. 138–147. Karhumaa, K., Hahn-Hgerdal, B., and Gorwa-Grauslund, M.F., Yeast, 2005, vol. 22, no. 5, pp. 359–368. Karhumaa, K., Fromanger, R., Hahn-Hgerdal, B., and Gorwa-Grauslund, M.F., Appl. Microbiol. Biotechnol., 2007, vol. 73, no. 5, pp. 1039–1046. Wang, X.X., Fang, B.S., Luo, J.X., Li, W.J., and Zhang, L.Y., Biotechnol. Lett., 2007, vol. 29, no. 9, pp. 1409–1412. Toivari, M.H., Aristidou, A., Ruohonen, L., and Penttila, M., Metab. Eng., 2001, vol. 3, no. 3, pp. 236–249. Walfridsson, M., Anderlund, M., Bao, X.M., and Hahn-Hgerdal, B., Appl. Microbiol. Biotechnol., 1997, vol. 48, no. 2, pp. 218–224.