Co-crystallization with diabodies: A case study for the introduction of synthetic symmetry

Structure - Tập 29 - Trang 598-605.e3 - 2021
Chelsy Chesterman1,2, Eddy Arnold1
1Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
2GSK, Rockville, MD 20850, USA

Tài liệu tham khảo

Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925 Afonine, 2012, Towards automated crystallographic structure refinement with phenix, Refine. Acta Crystallogr. Sect. D Biol. Crystallogr., 68, 352, 10.1107/S0907444912001308 Ahmad, 2012, ScFv antibody: principles and clinical application, Clin. Dev. Immunol., 2012, 980250, 10.1155/2012/980250 Bachman, 2013, Site-directed mutagenesis, Methods Enzymol., 529, 241, 10.1016/B978-0-12-418687-3.00019-7 Banatao, 2006, An approach to crystallizing proteins by synthetic symmetrization, PNAS, 103, 16230, 10.1073/pnas.0607674103 Banisadr, 2018, Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells, Hum. Vaccin. Immunother., 14, 856, 10.1080/21645515.2017.1407482 Bauman, 2008, Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design, Nucleic Acids Res., 36, 5083, 10.1093/nar/gkn464 Borras, 2010, Generic approach for the generation of stable humanized single-chain Fv fragments from rabbit monoclonal antibodies, J. Biol. Chem., 285, 9054, 10.1074/jbc.M109.072876 Clark, 1995, Crystallization of human immunodeficiency virus type 1 reverse transcriptase with and without nucleic acid substrates, inhibitors, and an antibody Fab fragment, Methods Enzymol., 262, 171, 10.1016/0076-6879(95)62017-6 Derewenda, 2010, Application of protein engineering to enhance crystallizability and improve crystal properties, Acta Crystallogr. - Sect. D Biol. Crystallogr., 66, 604, 10.1107/S090744491000644X Ding, 1998, Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution, J. Mol. Biol., 284, 1095, 10.1006/jmbi.1998.2208 Emsley, 2010, Features and development of Coot, Acta Crystallogr. - Sect. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Forse, 2011, Synthetic symmetrization in the crystallization and structure determination of CelA from Thermotoga maritima, Protein Sci., 20, 168, 10.1002/pro.550 Gaciarz, 2016, Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli, Microb. Cell Fact., 15, 22, 10.1186/s12934-016-0419-5 Goldschmidt, 2007, Toward rational protein crystallization: a Web server for the design of crystallizable protein variants, Protein Sci., 16, 1569, 10.1110/ps.072914007 Hino, 2013, Generation of functional antibodies for mammalian membrane protein crystallography, Curr. Opin. Struct. Biol., 23, 2, 10.1016/j.sbi.2013.04.007 Ho, 1989, Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, 77, 51, 10.1016/0378-1119(89)90358-2 Holcomb, 2017, Protein crystallization: eluding the bottleneck of X-ray crystallography, AIMS Biophys., 4, 557, 10.3934/biophy.2017.4.557 Holliger, 1993, “Diabodies”: small bivalent and bispecific antibody fragments, PNAS, 90, 6444, 10.1073/pnas.90.14.6444 Hopkins, 2017, BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis, J. Appl. Crystallogr., 50, 1545, 10.1107/S1600576717011438 Illiams, 1997, The 2.0-Å resolution crystal structure of a trimeric antibody fragment with noncognate VH-VL domain pairs shows a rearrangement of VH CDR3, Proc. Natl. Acad. Sci., 94, 9637, 10.1073/pnas.94.18.9637 Jacobo-Molina, 1991, Crystals of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase with a monoclonal antibody Fab fragment and double-stranded DNA diffract x-rays to, PNAS, 88, 10895, 10.1073/pnas.88.23.10895 Jacobo-Molina, 1993, Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA, Proc. Natl. Acad. Sci., 90, 6320, 10.1073/pnas.90.13.6320 Kabat, 1991 Kim, 2011, Rapid identification of recombinant Fabs that bind to membrane proteins, Methods, 55, 303, 10.1016/j.ymeth.2011.09.012 Kim, 2016, Crystal structures of mono- and bi-specific diabodies and reduction of their structural flexibility by introduction of disulfide bridges at the Fv interface, Sci. Rep., 6, 34515, 10.1038/srep34515 Krishnamurthy, 2012, X-ray structures of LeuT in substrate-free outward-open and apo inward-open states, Nature, 481, 469, 10.1038/nature10737 Krissinel, 2007, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol., 372, 774, 10.1016/j.jmb.2007.05.022 Kunik, 2012, Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure, Nucleic Acids Res., 40, 521, 10.1093/nar/gks480 Laganowsky, 2011, An approach to crystallizing proteins by metal-mediated synthetic symmetrization, Protein Sci., 20, 1876, 10.1002/pro.727 Leibly, 2015, A suite of engineered GFP molecules for oligomeric scaffolding, Structure, 23, 1754, 10.1016/j.str.2015.07.008 Lieberman, 2011, Crystallization chaperone strategies for membrane proteins, Methods, 55, 293, 10.1016/j.ymeth.2011.08.004 Lim, 2011, High-efficiency screening of monoclonal antibodies for membrane protein crystallography, PLoS One, 6, e24653, 10.1371/journal.pone.0024653 Lobstein, 2012, SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm, Microb. Cell Fact., 11, 56, 10.1186/1475-2859-11-56 Mccoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206 Miller, 2016, Structure of HIV-1 reverse transcriptase bound to a novel 38-mer hairpin template-primer DNA aptamer, Protein Sci., 25, 46, 10.1002/pro.2776 Otwinowski, 1997, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol., 276, 306 Shaw, 2014, Automation in biological crystallization, Acta Cryst. F, F70, 686, 10.1107/S2053230X14011601 Stahl, 2010, Generation and characterization of a chimeric rabbit/human Fab for co-crystallization of HIV-1 Rev, J. Mol. Biol., 397, 697, 10.1016/j.jmb.2010.01.061 Todorovska, 2001, Design and application of diabodies, triabodies and tetrabodies for cancer targeting, J. Immunol. Methods, 248, 47, 10.1016/S0022-1759(00)00342-2 Yamada, 2007, ‘Crystal lattice engineering,’ an approach to engineer protein crystal contacts by creating intermolecular symmetry: crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines, Protein Sci., 16, 1389, 10.1110/ps.072851407