Co/N–C nanotubes with increased coupling sites by space-confined pyrolysis for high electrocatalytic activity
Tài liệu tham khảo
Erickson, 2012, J. Am. Chem. Soc., 134, 197, 10.1021/ja210465x
Steele, 2001, Nature, 414, 345, 10.1038/35104620
Guo, 2012, Angew. Chem. Int. Ed., 51
Winter, 2004, Chem. Rev., 104, 4245, 10.1021/cr020730k
Gewirth, 2010, Inorg. Chem., 49, 3557, 10.1021/ic9022486
Xiong, 2010, J. Am. Chem. Soc., 132, 15839, 10.1021/ja104425h
Wu, 2012, J. Am. Chem. Soc., 134, 9082, 10.1021/ja3030565
Wu, 2011, Science, 332, 443, 10.1126/science.1200832
Liang, 2011, Nat. Mater, 10, 780, 10.1038/nmat3087
Duerr, 2007, J. Power Sources, 171, 1023, 10.1016/j.jpowsour.2007.06.011
Li, 2015, ACS Catal., 5, 4825, 10.1021/acscatal.5b00320
Ma, 2015, J. Power Sources, 280, 526, 10.1016/j.jpowsour.2015.01.139
Yang, 2007, J. Electrochem. Soc., 155, B79, 10.1149/1.2803519
Huang, 2015, Electrochim. Acta, 174, 172, 10.1016/j.electacta.2015.05.152
Li, 2016, Inorg. Chem. Front., 3, 175, 10.1039/C5QI00187K
Wei, 2014, ChemElectroChem, 1, 799, 10.1002/celc.201300211
Zhao, 2015, Part. Part. Syst. Charact., 32, 429, 10.1002/ppsc.201400177
Tan, 2012, Adv. Funct. Mater, 22, 4584, 10.1002/adfm.201201244
Wen, 2012, Adv. Mater, 24, 1399, 10.1002/adma.201104392
Deng, 2015, Angew. Chem. Int. Ed., 54, 2100, 10.1002/anie.201409524
Deng, 2014, Energy Environ. Sci., 7, 1919, 10.1039/C4EE00370E
Zou, 2014, Angew. Chem. Int. Ed., 53, 4372, 10.1002/anie.201311111
Deng, 2013, Angew. Chem. Int. Ed., 52, 371, 10.1002/anie.201204958
Ren, 2015, Adv. Energy Mater, 5, 1401660, 10.1002/aenm.201401660
Hou, 2015, Adv. Funct. Mater, 25, 872, 10.1002/adfm.201403657
Zhou, 2015, J. Mater. Chem., A 3, 1915, 10.1039/C4TA06284A
Zhou, 2015, Chem. Mater, 27, 2026, 10.1021/acs.chemmater.5b00331
Zhao, 2016, J. Mater. Chem., A 4, 12818, 10.1039/C6TA04244A
Zhao, 2014, J. Am. Chem. Soc., 136, 7551, 10.1021/ja502532y
Zeng, 2016, Adv. Funct. Mater, 26, 4397, 10.1002/adfm.201600636
Zhang, 2016, Chem. Commun., 52, 5946, 10.1039/C6CC02513G
Wang, 2015, Chem. Commun., 51, 8942, 10.1039/C5CC02400E
Wang, 2008, Angew. Chem. Int. Ed., 47, 373, 10.1002/anie.200702721
Lee, 2014, ACS Nano, 8, 4510, 10.1021/nn5020598
Lee, 2007, Science, 318, 426, 10.1126/science.1147241
Harrington, 2010, Science, 328, 216, 10.1126/science.1181044
Dreyer, 2012, Langmuir, 28, 6428, 10.1021/la204831b
Yang, 2015, J. Mater. Chem., A 3, 1258, 10.1039/C4TA05747C
Xia, 2014, ACS Appl. Mater. Interfaces, 6, 2051, 10.1021/am405142p
Jiao, 2013, Chem. Commun., 49, 3461, 10.1039/c3cc40568k
El-Sawy, 2016, Adv. Energy Mater, 6, 1501966, 10.1002/aenm.201501966
Li, 2006, J. Power Sources, 160, 633, 10.1016/j.jpowsour.2006.01.067
Lee, 2012, Appl. Cat. A General, 429–430, 39, 10.1016/j.apcata.2012.04.002
Meng, 2014, J. Am. Chem. Soc., 136, 13554, 10.1021/ja507463w
Liu, 2016, J. Mater. Chem., A 4, 1694, 10.1039/C5TA10551J
Liu, 2013, Adv. Mater, 25, 6879, 10.1002/adma.201302786
Nam, 2015, ACS Nano, 9, 6493, 10.1021/acsnano.5b02266
Hu, 2014, Angew. Chem. Int. Ed., 53, 3675, 10.1002/anie.201400358
Yang, 2016, Nanoscale, 8, 959, 10.1039/C5NR08008H