Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nuôi cấy phối hợp Leptolyngbya tenuis (Tảo lam) và Chlorella ellipsoidea (Tảo xanh) để sản xuất biodiesel, thu giữ carbon và tích tụ cadmium
Tóm tắt
Cách tiếp cận nuôi cấy phối hợp sử dụng tảo lam—Leptolyngbya tenuis và tảo xanh—Chlorella ellipsoidea được thể hiện trong nghiên cứu hiện tại cho thấy các hiệu ứng cộng hưởng và cộng thêm trên sản lượng sinh khối, năng suất sinh khối, sản lượng lipid, năng suất lipid, quá trình cố định CO2 và hiệu quả xử lý cadmium. Kết quả của nuôi cấy phối hợp ở chế độ lô cho thấy tăng khoảng 2–3 lần trong sinh khối và tăng gấp đôi tổng lipid, so với các lô nuôi cấy tinh khiết. Các kết quả cho thấy các lô nuôi cấy phối hợp có tỷ lệ cố định CO2 cao đáng kể là 2.63 ± 0.09 g/L/ngày, cao hơn 1.5–2 lần so với nuôi cấy đơn (P < 0.05). Để khám phá quá trình tích tụ cadmium của các lô nuôi cấy phối hợp và các lô nuôi cấy tinh khiết, các nồng độ khác nhau của cadmium nitrate đã được sử dụng trong các thí nghiệm trong bình. Sự tích tụ cadmium được quan sát theo thứ tự: nuôi cấy phối hợp (74%, 0.37 mg/L) > Chlorella (58%, 0.29 mg/L) > Leptolyngbya (50%, 0.25 mg/L) (P < 0.05). Ngoài ra, thành phần axit béo, phân tích CHNS, đặc trưng biodiesel và thành phần sinh hóa cũng được xác định bằng phương pháp nuôi cấy phối hợp. Sản lượng sinh khối tối đa, năng suất, hàm lượng lipid và tỷ lệ cố định CO2 trong nuôi cấy phối hợp có kích thích cadmium lần lượt là 3.95 ± 0.13 g/L, 258.88 ± 15.75 mg/L/ngày, 41.43 ± 0.71%, và 3.21 ± 0.20 g/L/ngày, tương ứng cao hơn 1.2, 1.3, 2.3, và 1.2 lần so với đối chứng (P < 0.05). Những thay đổi do cadmium trong sự phát triển và sản lượng lipid trong nuôi cấy phối hợp gợi ý rằng đây là phương pháp sản xuất biodiesel hiệu quả về chi phí và thân thiện với môi trường.
Từ khóa
#nuôi cấy phối hợp #tảo lam #tảo xanh #sinh khối #lipid #cố định CO2 #xử lý cadmium #sản xuất biodiesel #thu giữ carbonTài liệu tham khảo
Satpati GG, Pal R (2015) Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining-an improved technique. Ann Microbiol 65:937–949. https://doi.org/10.1007/s13213-014-0937-5
Satpati GG, Gorain PC, Paul I, Pal R (2016) An integrated salinity-driven workflow for rapid lipid enhancement in green microalgae for biodiesel application. RSC Adv 6:112340–112355. https://doi.org/10.1039/C6RA23933A
de Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y (2011) Cell–cell interaction in the eukaryote–prokaryote model using the microalgae Chlorella vulgaris and the bacterium Azospirillum brasiliense immobilized in polymer beads. J Phycol 47:1350–1359. https://doi.org/10.1111/j.1529-8817.2011.01062.x
Carneiro M, Pojo V, Malcata FX, Otero A (2019) Lipid accumulation in selected Tetraselmis strains. J Appl Phycol 31:2845–2853. https://doi.org/10.1007/s10811-019-01807-8
Gupta N, Khare P, Singh DP (2019) Nitrogen-dependent metabolic regulation of lipid production in microalga Scenedesmus vacuolatus. Ecotox Environ Safe 174:706–713. https://doi.org/10.1016/j.ecoenv.2019.03.035
Singh A, Ummalyma SB (2020) Bioremediation and biomass production of microalgae cultivation in river water contaminated with pharmaceutical effluent. Bioresour Technol 307:123233. https://doi.org/10.1016/j.biortech.2020.123233
Liu ZY, Wang GCe, Zhou BC, (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722. https://doi.org/10.1016/j.biortech.2007.09.073
Li Y, Mu J, Chen D, Han F, Xu H, Kong F, Xie F, Feng B (2013) Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic–Cu(II) stressed (HCuS) coupling cultivation. Bioresour Technol 148:283–292. https://doi.org/10.1016/j.biortech.2013.08.153
Concas A, Steriti A, Pisu M, Cao G (2014) Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors. Bioresour Technol 153:340–350. https://doi.org/10.1016/j.biortech.2013.11.085
Yang J, Cao J, Xing G, Yuan H (2015) Lipid production combined with Biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544. https://doi.org/10.1016/j.biortech.2014.10.124
Svircev Z, Tamas I, Nenin P, Drobac A (1997) Co-cultivation of N2- fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl Soil Ecol 6:301–308. https://doi.org/10.1016/S0929-1393(97)00022-X
Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS, Mouradov A (2014) Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS ONE 9(11):e113497. https://doi.org/10.1371/journal.pone.0113497
Yen HW, Chen PW, Chen LJ (2015) The synergistic effects for the co-cultivation of oleaginous yeast—Rhodotorula glutinis and microalgae—Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152. https://doi.org/10.1016/j.biortech.2014.09.113
Fakhimi N, Tavakoli O (2018) Improving hydrogen production using co-cultivation of bacteria with Chlamydomonas reinhardtii microalga. Mater Sci Energ Technol 2(1):1–7
Rashid N, Ryu AJ, Jeong KJ, Lee B, Chang YK (2019) Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production. Energ Convers Manage 196:640–648. https://doi.org/10.1016/j.enconman.2019.05.106
Bilanovic D, Holland M, Starosvetsky J, Armon R (2016) Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture. Bioresour Technol 220:282–288. https://doi.org/10.1016/j.biortech.2016.08.083
Gorain PC, Sengupta S, Satpati GG, Paul S, Tripathi S, Pal R (2018) Carbon sequestration in macroalgal mats of brackish-water habitats in Indian Sunderbans: potential as renewable organic resource. Sci Total Environ 626:689–702. https://doi.org/10.1016/j.scitotenv.2018.01.106
Mousavi S, Najafpour GD, Mohammadi M (2018) CO2 biofixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environ Sci Pollut Res 25:30139–30150. https://doi.org/10.1007/s11356-018-3037-4
Amavizca E, Bashan Y, Ryu CM, Farag MA, Bebout BM, de-Bashan LE, (2017) Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep 7:41310. https://doi.org/10.1038/srep41310
Zhou K, Zhang Y, Jia X (2018) Co-cultivation of fungal–microalgal strains in biogas slurry and biogas purification under different initial CO2 concentrations. Sci Rep 8:7786. https://doi.org/10.1038/s41598-018-26141-w
Prajapati SK, Kumar P, Malik A, Choudhary P (2014) Exploring pellet forming filamentous fungi as tool for harvesting non- flocculating unicellular microalgae. Bioenerg Res 7:1430–1440. https://doi.org/10.1007/s12155-014-9481-1
Arora N, Gulati K, Patel A, Pruthi PA, Poluri KM, Pruthi V (2017) A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Res 24:29–39. https://doi.org/10.1016/j.algal.2017.03.012
Liu Y, Zhan J, Hong Y (2017) Effects of metal ions on the cultivation of an oleaginous microalga Chlorella sp. Environ Sci Pollut Res 24:26594–26604. https://doi.org/10.1007/s11356-017-0258-x
Deng J, Fu D, Hu W, Lu X, Wu Y, Bryan H (2020) Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: implications for bioremediation of heavy metal pollution. Bioresour Technol 303:122963. https://doi.org/10.1016/j.biortech.2020.122963
Cao W, Wang X, Sun S, Hu C, Zhao Y (2017) Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods. Bioresour Technol 241:701–709. https://doi.org/10.1016/j.biortech.2017.05.194
Arora N, Patel A, Pruthi PA, Pruthi V (2016) Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresour Technol 213:79–87. https://doi.org/10.1016/j.biortech.2016.02.112
Satpati GG, Kanjilal S, Prasad RBN, Pal R (2015) Rapid accumulation of total lipid in Rhizoclonium africanum Kutzing as a biodiesel feedstock under nutrient limitations and the associated changes at cellular level. Int J Microbiol Hindawi 2015:1–13. https://doi.org/10.1155/2015/275035
Satpati GG, Gorain PC, Pal R (2016) Efficacy of EDTA and phosphorous on biomass yield and total lipid accumulation in two green microalgae with special emphasis on neutral lipid detection by flow cytometry. Adv Biol Hindawi 2016:1–12. https://doi.org/10.1155/2016/8712470
Pandit PR, Fulekar MH, Karuna MSL (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ Sci Pollut Res 24(15):13437–13451. https://doi.org/10.1007/s11356-017-8875-y
Johanson R (1953) Interference of pentose in the estimation of hexose sugars with anthrone. Nature 171(4343):176–177. https://doi.org/10.1038/171176a0
Lowry OH, Rosenbergh NJ, Rarr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275
Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/059-099
AOCS (1998) Official methods and recommended practices of the American oils chemists society. In: Firestone D (ed) 5th edn. AOCS Press, Champaign, USA, pp. 1–25
European Standard EN 14214 (2003) European Standards for biodiesel, http://www.din.de. Accessed 8 July 2019
ASTM (2003) American standards for testing of materials, D 4052–96, D 240–02, D 482–74.
Chmielewska E, Medved J (2001) Bioaccumulation of Heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon. Croat Chem Acta 74(1):135–145
Singh DP, Khattar JS, Rajput A, Chaudhary R, Singh R (2019) High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE 14(9):e0221930. https://doi.org/10.1371/journal.pone.0221930
Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in Cyanobacterial photosystem II assembly and function. Front Plant Sci 7:295. https://doi.org/10.3389/fpls.2016.00295
Satpati GG, Mallick SK, Pal R (2015) An alternative high throughput staining method for detection of neutral lipid in green microalgae for biodiesel application. Biotechnol Bioproc E 20:1044–1055. https://doi.org/10.1007/s12257-015-0281-z
Wei Z, Wang H, Li X, Zhao Q, Yin Y, Xi L, Ge B, Qin S (2020) Enhanced biomass and lipid production by co-cultivation of Chlorella vulgaris with Mesorhizobium sangaii under nitrogen limitation. J Appl Phycol 32:233–242. https://doi.org/10.1007/s10811-019-01924-4
Kumsiri B, Pekkoh J, Pathom-aree W, Lumyong S, Pumas C (2018) Synergistic effect of co-culture of microalga and actinomycete in diluted chicken manure digestate for lipid production. Algal Res 33:239–247. https://doi.org/10.1016/j.algal.2018.05.020
Barman N, Satpati GG, Sen Roy S, Khatoon N, Sen R, Kanjilal S, Prasad RBN, Pal R (2012) Mapping algae of Sundarban origin as lipid feedstock for potential biodiesel application. J Algal Biomass Utln 3(2):42–49
Maurya R, Paliwal C, Chokshi K, Pancha I, Ghosh T, Satpati GG, Pal R, Ghosh A, Mishra S (2016) Hydrolysate of lipid extracted microalgal biomass residue: an algal growth promoter and enhancer. Bioresour Technol 207:197–204. https://doi.org/10.1016/j.biortech.2016.02.018
Adamczyk M, Lasek J, Skawinska A (2016) CO2 Biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Appl Biochem Biotechnol 179:1248–1261. https://doi.org/10.1007/s12010-016-2062-3
Shivaji S, Dronamaraju SVL (2019) Scenedesnus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of cadmium and zinc. Sci Rep 9:8485. https://doi.org/10.1038/s41598-019-44374-1
Morales M, Sanchez L, Revah S (2018) The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiol Lett 365(3):1–11. https://doi.org/10.1093/femsle/fnx262
Chia MA, Lombardi AT, Melao Mda G, Parrish CC (2013) Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat Toxicol 128–129:171–182. https://doi.org/10.1016/j.aquatox.2012.12.004
Saranya G, Ramachandra TV (2020) Novel biocatalyst for optimal biodiesel production from diatoms. Renew Energ 153:919–934. https://doi.org/10.1016/j.renene.2020.02.053