Clustering with label constrained Dirichlet process mixture model
Tài liệu tham khảo
Banfield, 1993, Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803, 10.2307/2532201
Basu, 2008
Bilenko, 2004, Integrating constraints and metric learning in semi-supervised clustering, 11
Blackwell, 1973, Ferguson distributions via Pólya urn schemes, Ann. Statist., 1, 353, 10.1214/aos/1176342372
Collins, 1998, Design and construction of a realistic digital brain phantom, IEEE Trans. Med. Imaging, 17, 463, 10.1109/42.712135
Davidson, 2005, Clustering with constraints: Feasibility issues and the k-means algorithm, 138
Dawid, 1979, Maximum likelihood estimation of observer error-rates using the em algorithm, J. R. Stat. Soc. Ser. C (Appl. Stat.), 28, 20
Dua, 2019
Escobar, 1995, BayesIan density estimation and inference using mixtures, J. Amer. Statist. Assoc., 90, 577, 10.1080/01621459.1995.10476550
Ferguson, 1973, A Bayesian analysis of some nonparametric problems, Ann. Statist., 1, 209, 10.1214/aos/1176342360
Fraley, 2002, Model-based clustering, discriminant analysis, and density estimation, J. Amer. Statist. Assoc., 97, 611, 10.1198/016214502760047131
Hart, 2014, Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD, Human Brain Mapp., 35, 3083, 10.1002/hbm.22386
Hartigan, 1990, Partition models, Comm. Statist. Theory Methods, 19, 2745, 10.1080/03610929008830345
Jain, 1999, Data clustering: A review, ACM Comput. Surv., 31, 264, 10.1145/331499.331504
Kwan, 1999, MRI simulation-based evaluation of image-processing and classification methods, IEEE Trans. Med. Imaging, 18, 1085, 10.1109/42.816072
Lelis, 2009, Semi-supervised density-based clustering, 842
Liu, 2018, Partition level constrained clustering, IEEE Trans. Pattern Anal. Mach. Intell., 40, 2469, 10.1109/TPAMI.2017.2763945
Lo, 1984, On a class of Bayesian nonparametric estimates: I. Density estimates, Ann. Statist., 12, 351, 10.1214/aos/1176346412
Lu, 2005, Semi-supervised learning with penalized probabilistic clustering, 849
Müller, 2011, A product partition model with regression on covariates, J. Comput. Graph. Statist., 20, 260, 10.1198/jcgs.2011.09066
Neal, 1998, A view of the EM algorithm that justifies incremental, sparse, and other variants, 355
Pedrycz, 1985, Algorithms of fuzzy clustering with partial supervision, Pattern Recognit. Lett., 3, 13, 10.1016/0167-8655(85)90037-6
Pedrycz, 1997, Fuzzy clustering with partial supervision, IEEE Trans. Syst. Man Cybern. B, 27, 787, 10.1109/3477.623232
Pelleg, 2007, K-means with large and noisy constraint sets, 674
Quintana, 2003, BayesIan clustering and product partition models, J. R. Stat. Soc. Ser. B Stat. Methodol., 65, 557, 10.1111/1467-9868.00402
Shental, 2003, Computing Gaussian mixture models with EM using equivalence constraints, 465
Strehl, 2002, Cluster ensembles—A knowledge reuse framework for combining multiple partitions, J. Mach. Learn. Res., 3, 583
Wagstaff, 2000, Clustering with instance-level constraints, 1103
Wagstaff, 2001, Constrained K-means clustering with background knowledge, 577
Xu, 2005, Survey of clustering algorithms, IEEE Trans. Neural Netw., 16, 645, 10.1109/TNN.2005.845141
Yi, 2012, Crowdclustering with sparse pairwise labels: A matrix completion approach
Zhou, 2012, Learning from the wisdom of crowds by minimax entropy, 2195
Zijdenbos, 1994, Morphometric analysis of white matter lesions in MR images: method and validation, IEEE Trans. Med. Imaging, 13, 716, 10.1109/42.363096