Clustering multivariate functional data in group-specific functional subspaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akaike H (1974) A new look at the statistical model identification. IEEE Tran Autom Control 9:716–723
Basso RM, Lachos VH, Cabral CRB, Ghosh P (2010) Robust mixture modeling based on scale mixtures of skew-normal distributions. Comput Stat Data Anal 54(12):2926–2941
Berrendero J, Justel A, Svarc M (2011) Principal components for multivariate functional data. Comput Stat Data Anal 55:2619–263
Biernacki C, Celeux G, Govaert G (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans PAMI 22:719–725
Birge L, Massart P (2007) Minimal penalties for Gaussian model selection. Probab Theory Relat Fields 138:33–73
Bongiorno EG, Goia A (2016) Classification methods for hilbert data based on surrogate density. Comput Stat Data Anal 99(C):204–222
Bouveyron C, Jacques J (2011) Model-based clustering of time series in group-specific functional subspaces. Adv Data Anal Classif 5(4):281–300
Bouveyron C, Come E, Jacques J (2015) The discriminative functional mixture model for the analysis of bike sharing systems. Ann Appl Stat 9(4):1726–1760
Bouveyron C, Celeux G, Murphy T, Raftery A (2019) Model-based clustering and classification for data science: with applications in R. Statistical and probabilistic mathematics. Cambridge University Press, Cambridge
Byers S, Raftery AE (1998) Nearest-neighbor clutter removal for estimating features in spatial point processes. J Am Stat Assoc 93(442):577–584
Chen L, Jiang C (2016) Multi-dimensional functional principal component analysis. Stat Comput 27:1181–1192
Chiou J, Chen Y, Yang Y (2014) Multivariate functional principal component analysis: a normalization approach. Stat Sin 24:1571–1596
Chiou JM, Li PL (2007) Functional clustering and identifying substructures of longitudinal data. J R Stat Soc Ser B Stat Methodol 69(4):679–699
Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39(1):1–38
Ferraty F, Vieu P (2003) Curves discrimination: a nonparametric approach. Comput Stat Data Anal 44:161–173
Gallegos MT, Ritter G (2009) Trimming algorithms for clustering contaminated grouped data and their robustness. Adv Data Anal Classif 3:135–167
Hennig C, Coretto P (2007) The noise component in model-based cluster analysis. Springer, Berlin, pp 127–138
Ieva F, Paganoni AM (2016) Risk prediction for myocardial infarction via generalized functional regression models. Stat Methods Med Res 25:1648–1660
Ieva F, Paganoni A, Pigoli D, Vitelli V (2013) Multivariate functional clustering for the morphological analysis of ECG curves. J R Stat Soc Series C (Appl Stat) 62(3):401–418
Jacques J, Preda C (2013) Funclust: a curves clustering method using functional random variable density approximation. Neurocomputing 112:164–171
Jacques J, Preda C (2014b) Model based clustering for multivariate functional data. Comput Stat Data Anal 71:92–106
James G, Sugar C (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98(462):397–408
Kayano M, Dozono K, Konishi S (2010) Functional cluster analysis via orthonormalized Gaussian basis expansions and its application. J Classif 27:211–230
Petersen KB, Pedersen MS (2012) The matrix cookbook. http://www2.imm.dtu.dk/pubdb/p.php?3274, version 20121115
Preda C (2007) Regression models for functional data by reproducing kernel hilbert spaces methods. J Stat Plan Inference 137:829–840
R Core Team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, https://www.R-project.org/
Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer series in statistics. Springer, New York
Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850
Saporta G (1981) Méthodes exploratoires d’analyse de données temporelles. Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche 37–38:7–194
Tokushige S, Yadohisa H, Inada K (2007) Crisp and fuzzy k-means clustering algorithms for multivariate functional data. Comput Stat 22:1–16
Traore OI, Cristini P, Favretto-Cristini N, Pantera L, Vieu P, Viguier-Pla S (2019) Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches. Comput Stat 34(2):631–652
Yamamoto M (2012) Clustering of functional data in a low-dimensional subspace. Adv Data Anal Classif 6:219–247
Yamamoto M, Hwang H (2017) Dimension-reduced clustering of functional data via subspace separation. J Classif 34:294–326